![پروژه نجوم رشته های فیزیک و برق(شکست نور)](../prod-images/150638.jpg)
موضوع پروژه شکست نور می باشد.که در فایل word ویرایش و صفحه بندی و برای ارائه آماده شده است.
پروژه نجوم رشته های فیزیک و برق(شکست نور)
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 135
فهرست مطالب
مقدمه
مکان
کلیات
تاریخچه علم
علم نجوم
آشنایی با بعضی از اصطلاحات و احکام
کهکشان راه
: بررسی تاریخی رصد خانه ها در ایران و جهان
بررسی نمونه های موجود در عصر حاضر
خصوصیات منطقه ای شهر تهران
برنامه ریزی
...
مقدمه
ادمی از گذشته های دور به دنبال حل معماهای پیچیده در اطراف خود بوده و هست .
پدیده های آسمانی و نجومی از دیرباز توجه انسان را به خود جلب می کرده اند و آدمی همواره سعی داشت که به حقایق آسمان و جهان پیرامون خود پی ببرد و کنجکاوی موجود در ذات خود را بدین وسیله ارضا کند و از آن تصویری قابل درک بسازد .
این تحقیقات به مرور زمان پیشرفت کرد تا جاییکه در عصر حاضر نتنها دانشمندان بلکه جمع کثیری از مردم را نیز به سوی خود جلب کرد بطوری که نجوم آماتوری پایه گزاری گردید و ختی منجر شد به کشف پدیده ها ی نجومی ای که توسط مردم عادی صورت گرفته بود .
در فصل اول به تعریف کلیات این علم می پردازیم تا در ادامه بحث مطالب راخت تر درک شوند .
تاریخچه نجوم
نجوم مطالعه مواد و مقدمهای است درباره فرآیند بوجود آمدن آنچه در آنسوی جو زمین است که این جهان ، آسمان و گوی آسمان را از اتمهای کوچک تا گیتی وسیع شامل میشود. منجمان اجرام آسمانی مانند سیارات ، ستارهها ، ستارههای دنباله دار ، کهکشانها ، سحابیها و مواد بین کهکشانها را مطالعه میکنند. برای اینکه چگونگی تشکیل شدن ، چگونگی بوجود آمدن و منسب هر کدام را مشخص میکنند و اینکه چگونه بر یکدیگر تأثیر میگذارند و چه اتفاقی ممکن است برای آنها بیفتد.
بخشی از جهان ما ، زمین و آنچه در آن اتفاق میافتد اختر شناسی را شامل میشود، در واقع زمین آزمایشگاه ماست و هر چه که درباره جهان میدانیم از آنچه از زمین میتوانیم ببینیم و دریابیم و یا تصور کنیم سرچشمه گرفته است.
چگونه علم نجوم بوجود آمد؟
قبل از اختراع تلسکوپ ، در نزدیکی قرن هفدهم ، نجوم بر مبنای مشاهده با چشم غیر مسلح پایه گذاری شده بود. در ابتدا مردم از محل ستارهها و سیارات در آسمان نقشه تهیه میکردند. متمدن ترینها برای نقشه برداری آسمان نظام داشتند و میدانیم که امروزه نجوم از نظریات یونانیان باستان سرچشمه میگیرد. در سال 150 میلادی یک منجم و ریاضیدان یونانی به نام کلودیوس بطلمیوس یک رساله درباره علم نجوم نوشت. او در آن 48 گروه ستارهای که صورت فلکی نامیده میشدند را فهرست کرد ، مانند جبار ، برساووش و ... که بیشتر از اسامی اساطیر گرفته شدهاند.
همانطور که ما هنگام نگاه کردن به ابرها ، آنها را به اشکالی از اجسام آشنا تصور میکنیم، همانگونه بطلمیوس در گروهبندی ستارگان اشکال آشنا را مشاهده کرد. همچنین بطلمیوس متوجه شد که به نظر ستارگان در سرتاسر آسمان حرکت میکنند، او گفت که تمام اجرام آسمانی به دور زمین که مرکز جهان بیحرکت ایستاده حرکت میکنند. این نظریه علمی برای قرنها پذیرفته شده بود. تئوری بطلمیوس راجع به جهان طرح زمین مرکز نامیده شد، زیرا در آن زمین در مرکز عالم قراردارد.
چه موقع کشف شد که زمین بدور خورشید میچرخد؟
قبول این واقعیت مدتها طول کشید. در سال 1543 میلادی یک منجم لهستانی به نام نیکلاس کوپرنیک De Revolutionibus را منتشر کرد که مشخص میکرد سیارات به دور خورشید گردش میکنند، اما نظریه او با تعلیمات کلیسای کاتولیک مغایرت داشت و کلیسا قدرتمندترین سازمان اجتماعی و سیاسی آن زمان بود. عقیدههایی مانند طرح خورشید مرکزی که در جهان تفکر بدیع بودند سزاوار کیفر مرگ بودند.
بنابراین اگر هم تعدادی دیگر از منجمان طرح کپرنیک را میپذیرفتند از تصدیق کردن آن هراس داشتند. در سال 1632 گالیلئو گالیله ، یکی از برجستهترین منجمان در طول تاریخ ، سرانجام یک کتاب در حمایت از نظریه کپرنیک منتشر کرد. کلیسای کاتولیک روم گالیله را برای محاکمه بخاطر بدعت گذارن احضار کرد و این منجم برای برگشتن از حرفش یا مرگ حق انتخاب داشت. گالیله دست از عقیده خود کشید اما کلیسا از پذیرفته شدن طرح خورشید در عرف نمیتوانست جلوگیری کند (در سال 1992کلیسای کاتولیک روم رسما با گالیله و کپرنیک موافقت کرد).
منجمان چگونه سریعا یک ستاره را از دیگران تشخیص میدهند؟
منجمان علاوه بر نقشه موقعیت ستارگان در آسمان تعیین کردند که کدام ستاره از دیگر ستارگان پر نورتر است. یک منجم یونانی به نام هیپارکوس جد بطلمیوس ابتدا ستارگان را بر اساس روشناییاشان طبقه بندی کرد. او شش طبقه روشنایی را با قدرشان لیست کرد (قدر یعنی درخشش یک ستاره که بر روی زمین نمایان میشود. قدر یک ستاره تا حد زیادی در تعیین اینکه چقدر از زمین فاصله دارد موثر است)، هیپارکوس 20 ستاره از قدر اول را طبقه بندی کرد و ستارگان ضعیف یعنی آنهایی که با چشم غیر مسلح دیده میشوند را در شش قدر طبقه بندی کرد.
نقش گالیلئو گالیله
گالیله در پیزای ایتالیا در 1564 در اواسط دوره رنسانس متولد شد. گالیله فقط اولین کسی که تلسکوپ را روی ستارگان متمرکز کرد نبود، او همچنین دیدگاه متفاوتی نسبت به جهان ایجاد کرد. گالیله استاد نجوم ، ریاضی ، فیزیک ، فلسفه و تبلیغات بود . تصور او (و احتمالا واقعیت) از یک نبوغ ذاتی بود: زیرک ، شوخ و اما زننده بود. مردم مهم انجمن او را جستجو میکردند، تا وقتی که کار منفور و خطرناک حمایت از دیدگاه خورشید مرکزی کپرنیک راجع به منظومه شمسی را در کارهایش انتشار داد:
ما این حقیقت را پذیرفتیم که خورشید در مرکز منظومه شمسی است و ما ممکن است گفته باشیم (هرکس میداند که خورشید به دور زمین می چرخد و فقط تعداد کمی دانشمند دیوانه فکر میکنند غیر از این است). در سال 1543 نیکولاس کوپرنیکوس رساله پیشنهادیاش را که تمام سیارات به انظام زمین به دور خورشید میچرخند منتشر کرد. این پیشرفت غیر منتظره برای عدهای بطور محرمانه خوشایند بود، برای قدرتمندترین دولت اروپا در آن زمان (کلیسای کاتولیک روم) در وضع موجود مسلما منفعتی وجود داشت. با این همه عقاید نظام و تواناییاش رویه زمین مرکزی در جهان باقی ماند.
گالیله بطور آشکارا از دیدگاه جهانی کپرنیک در مقابل کلیسا حمات کرد. روش رهبر کلیسا با دیگر بدعت گذاران نادیده گرفتن آنها یا آسیب رساندن به آنها با برخی شرایط بود. اما کلیسا نمیتوانست گالیله را نادیده بگیرد. در سال 1634 گالیله به دادگاه کلیسا آورده شد و ادعا کرد که دست از عقاید بدعت گذارانهاش درباره منظومه شمسی برداشته است. روبرو شدن با شکنجه و مرگ ، گالیه را وادار به تسلیم شدن کرد. او هنگامی که اتاق محاکمه را ترک کرد زیر لب گفت بی اعتنا به آنچه مجبور به گفتن شده بود ادعا کرد که زمین هنوز به دور خورشید میچرخد. گالیله بقیه عمر خود را در زیر شیروانی خانهای تا سال 1642 گذراند 355 سال بعد در سال1992 کلیسا رسما طرح کپرنیک را در مورد منظومه شمسی پذیرفت.
اجرام آسمانی
فضا از کهکشانها ، منظومهها ، ستارگان ، سیارات و بسیاری اجرام آسمانی دیگر انباشته شده است. عجایب و عظمت آنها به مراتب از تمامی دیگر پدیدههای آفرینش بیشتر است. کهکشانها و ستارگان و بطور کلی پدیدههای آسمانی انبوهی که عجیب و غریب مینماید وجود دارند، که پارهای از آنها بوسیله دانشمندان شناسایی شدهاند. مانند: کوتولههای سفید ، ستارگان نوترونی ، ستارگان هیپرونی ، کوازارها و دنباله دارها و سیاه چالهها و ... .
در فضای قابل رویت برای ماده میلیاردها کهکشان جداگانه وجود دارد که بزرگترین آنها نظیر راه شیری و نزدیکترین کهکشان به نام اندرومیدا یا به قول عبدالرحمن صوفی امراة المسلسله که فاصله آن از ما تقریبا 1.5 میلیون سال نوری و قطر زاویهای ان 3.5 درجه و قطر خطیاش در حدود 100 هزار سال نوری است و دارای تقریبا یکصد میلیارد ستاره است. هر کهکشان مجموعهای از میلیاردها ستاره است که بعضی از آنها از خورشید بزرگتر و بعضی دیگر بطور قابل توجهی کوچکتر.
سحابیها
در جهان علاوه بر ستارهها مقادیر زیادی گرد و غبار و گاز وجود دارد که ما بین کهکشانها پراکنده گردیده است. یعنی چگالی گاز در فضای بین کهکشانها فقط برابر 20 اتم در هر اینچ مکعب است. سحابیها به علت نور ستارگان مجاور خود قابل رویت هستند. به کمک تلسکوپ به ساختمان و ویژگی آنها میتوان پی برد. بعضی از سحابیها نیز تاریک بوده و مانع عبور نور ستارگانی که در پشت آنها قرار دارند میگردند.
سیارات
اجرام تقریبا کروی ، جامد و بزرگی هستند که به دور خورشید میگردند. بزرگترین آنها به نام مشتری است که جرمی معادل یک هزارم جرم خورشید را دارد. تا به حال سیستم سیارهای نظیر آن چه به خورشید مربوط است، کشف نگردیده است. سیارات اجرام سماوی نسبتا سرد بوده و انعکاس نور خورشید باعث مرئی شدن آنها میگردد.
تشخیص سیارات از ستارگان در آسمان شب
سیارات با نور ناپایدار میدرخشند، ولی نور ستارگان هم از لحاظ رنگ و هم از لحاظ روشنایی به سرعت تغییر میکند.
سیارات در آسمان حرکت کرده و محل آنها تغییر میکند، ولی ستارگان نسبت به هم دارا ی مکانهای تقریبا ثابتی هستند.
سیارات هنگام رصد با تلسکوپها بصورت قرص نورانی بزرگ دیده میشود، در صورتی که ستارگان بصورت نقاط روشن به نظر میرسند.
سیارات را میتوان در نواحی باریکی از آسمان مشاهده کرد، ولی ستارگان را میتوان در هر قسمتی از آسمان یافت.
سیارکها
سیارههای خرد ، اجرام جامد کوچکی هستند که به دور خورشید میچرخند و تفاوت آنها با سیارات در بزرگی آنها است. بزرگترین این سیارکهای خرد به نام سیرس میباشند، که قطرش برابر با 800 کیلومتر است. قطر اکثر آنها در حدود 3 کیلومتر میباشد. سیارکها نیز توسط انعکاس نور خورشید قابل رویت میباشند و آنها را بدون تلسکوپ نمیتوان دید.
قمرها
قمرها اغلب از اجتماع و تمرکز دیسکهای غبار و گاز در پیرامون سیارهها درست میشوند. شش سیاره از نه سیاره بزرگ هر کدام یک یا چند قمر دارند که به دور آنها میچرخند. تا به حال 45 قمر در منظومه شمسی کشف کردیده است.
ستارگان دنباله دار
ستارگان دنباله دار اجرام سماوی هستند که گه گاه ظاهر میشوند. هر ستاره دنباله دار از یک مسیر نورانی و دنباله طویلی تشکیل شده است. سر آن ممکن است به بزرگی خود خورشید و دم آن نیز در حدود چندین صد میلیون کیلومتر بوده باشد. هر ستاره دنباله دار با وجود اینکه صدها کیلومتر در ثانیه سرعت دارد برای یک چشم غیر مسطح همچون ما، بی حرکت به نظر می رسد. سرعت آنها را میتوان از تغییر مکانش نسبت به ستارگان زمینه ثابت آسمان تعین کرد.
تا کنون نزدیک به هشتصد ستاره دنباله دار کشف و نامگذاری گردیده است. اکثر ستارههای دنباله دار از یک مدار بستهای در حال حرکت هستند. چنین ستارگان دنباله دار اهمیت زیادی داشته و بعد از یک پریود به نزدیکی زمین آمده و مشاهده شدهاند، که مشهورترین آنها ستاره دنبالهدار هالی است. مدارهای ستارگان دنباله دار دیگر سهمی یا هذلولی است و به احتمال زیاد اینها فقط یک بار در مجاورت زمین ظاهر و رویت گردیده ، دور میزنند و سپس رفته و دیگر به نزدیکی زمین نمیگردند.
شهابوارها
اجسام جامد و ریز دیگری به اندازه ته سنجاق هستند، در فضا دیده میشوند. اکثرا گروهی از این شهابها به طرف زمین حرکت کرده و در جو آن به دام میدان مغناطیسی حاکم بر کره زمین میافتد. در اثر برخوردشان در فاصله 150 کیلومتری جو زمین و در اثر اصطکاک آن ، جسم سوخته و غبار آن به طرف زمین سقوط میکنند. نور حاصل شده از این برخورد را به نام شخانه مینامند. در واقع میشود اظهار کرد هر ساله چندین صد تن از غبار شخانه بر سطح زمین مینشینند. معمولا شهابها در فاصله 80 کیلومتری سطح زمین کاملا از بین میروند، ولی بعضی اوقات احتمال دارد که کاملا تحلیل نگردند و بصورت شهاب سنگ به سطح زمین برسند.
نامگذاری اجرام اعماق فضا
برخی اجرام غیر ستاره ای از جمله کهکشانها و سحابیها با عناوین رایجی نامیده میشوند، ولی برخی تنها با یک شماره مشخص میشوند. در سال 1774 شارل مسیه (1817 - 1730) فهرستی شامل 45 جرم آسمانی منتشر کرد و طی یک دهه بعد از آن به این تعداد افزود. نام هر یک از اجرام این فهرست متشکل از حرف ام (حرف اول مسیه) و یک عدد بدنبال این حرف است. نام بسیاری دیگر از اجرام آسمانی متشکل از ان. جی.سی و یک عدد است. این طرز نامگذاری در فهرستی که توسط ستاره شناس دانمارکی ، جان لودویک امیل دریر (1926 - 1852) ، منتشر شد، معرفی شده است. این فهرست ، فهرست عمومی نوین نامگذاری شده است.
ستاره شناسی
ستاره شناسی ، علمی است که با مشاهده و توضیح وقایعی که در خارج از زمین و جو آن رخ میدهد سر و کار دارد. این علم منشا پیدایش و خواص فیزیکی و شیمیائی اشیائی که قابل مشاهده در آسمان بوده (و خارج زمین قرار دارند) و همینطور فرآیندهای منتجه از آنها را مطالعه میکند. در طی قسمتی از قرن بیستم ، ستاره شناسی به سه شاخه تقسیم شده بود: محاسبات نجومی ، مکانیک آسمانی و فیزیک نجومی. حالات برجسته متداول فیزیک نجومی در نامگذاری گروههای آموزشی دانشگاهی و موسسات درگیر با تحقیقات نجومی متجلی میشود:
قدیمیترین آنها بدون هیچ تغییری ، گروهها و موسسات ستاره شناسی میباشند، جدیدترین آنها به نگه داشتن فیزیک نجومی در نامشان تمایل دارند، برخی اوقات کلمه ستاره شناسی را برای تأکید بر طبیعت تحقیقاتشان ، در نامشان قرار نمیدهند. به علاوه ، تحقیقات فیزیک نجومی ، مخصوصا در فیزیک نجومی نظری ، را افرادی که پس زمینه فیزیک و ریاضی دارند میتوانند انجام دهند.
ستاره شناسی از معدود علومی است که آماتورها هنوز در آن نقش فعالی دارند، خصوصا در کشف و مشاهده حوادث زودگذر. ستاره شناسی نباید با طالع بینی ، شبه علمی که با پیگرد مسیر اجرام آسمانی ، مبادرت به پیشگویی سرنوشت افراد مینماید اشتباه شود. این دو اگر چه در ریشه مشترکند، اما کاملا متفاوتند؛ ستاره شناسان روش علمی را پذیرفتهاند، در حالیکه طالع بینها اینطور نیستند.
تقسیمات ستاره شناسی
ستاره شناسی به چند شاخه تقسیم میگردد. اولین تقسیم بندی بین ستاره شناسی نظری و ستاره شناسی شهودی میباشد. مشاهده گرها روشهای مختلفی را برای جمع آوری اطلاعات درباره حوادث بکار میبرند، اطلاعاتی که بعدا توسط نظریه پردازان برای ایجاد تئوریها و مدلهایی ، برای شرح مشاهدات و پیش بینی حوادث جدید بکار میرود. حوزههای مطالعه همچنین به دو طریق دیگر تقسیم بندی میشوند: موضوعی ، که معمولا به منطقه فضا (مثلا ستاره شناسی کهکشانی) یا مسائل اشاره شده (مانند تشکیل ستاره یا کیهان شناسی) بستگی دارد؛ یا به روش مورد استفاده برای گرد آوری اطلاعات (بطور مبنائی ، چه ناحیهای از طیف الکترومغناطیس استفاده میشود). در حالیکه تقسیم بندی اولیه به هر دوی مشاهده گر و نظریه پرداز مربوط میشود، دومی مربوط به مشاهده گرهاست(نه کاملا) ، چون نظریه پردازها سعی میکنند از اطلاعات موجود در تمامی طول موجها استفاده کنند و مشاهده گرها اغلب بیش از یک منطقه از طیف را مشاهده میکنند.
چرا ستارگان میدرخشند؟
با چشم غیر مسلح در یک شب تاریک و بدون ماه و در هوای صاف میتوان حدود 2500 ستاره را در آسمان شناسایی کرد. با دوربین یا تلسکوپ میشود میلیونها ستاره را تشخیص داد. از سیارههای منظومه شمسی خودمان نظیر زهره و زحل که چشمپوشی کنیم، تمامی این ستارگان دور دست خورشیدها یا به عبارت دیگر گلولههای گازی پر حرارتی هستند که در سطح خود میتوانند تا هزاران درجه و در درون خود تا میلیونها درجه حرارت داشته باشند. در حقیقت بعضی از آنها با شدتی ده هزار برابر خورشید ما میدرخشند و برخی از آنها هم خیلی کم نورتر از ستاره مرکزی منظومه ما هستند، ولی تمام ستارگان در یک مورد مشترکند:
آنها در ژرفای درون خود از طریق تبدیل هیدروژن به هلیوم انرژی هستهای تولید میکنند. این چشمه جوشان و پایان ناپذیر انرژی به ستارگان کمک میکند که عمری بسیار طولانی داشته باشند. مثلا خورشید با مواد سوختنی که دارد 10 میلیارد سال عمر خواهد کرد. انرژی ایجاد شده در مرکز ستاره به خارج منتقل میشود و از سطح ستاره به شکل پرتوهای ماورای بنفش - رونتگن - ذرهای - نوری - گرمایی و امواج رادیویی انتشار مییابد. برخی از ستارگان در پایان عمر خود از طریق انفجارهای بسیار عظیم از بین میروند. آنگاه از آنها فقط گویهای مادی کوچک و کاملا در هم فشردهای باقی میماند که در علم ستاره شناسی ، کوتوله های سفید ، ستاره نوترونی و یا سیاهچاله نامیده میشوند. خورشید هم روزی تبدیل به یک کوتوله سفید خواهد شد.
رنگهای ستارگان
رنگ ستاره به دمای سطحش بستگی دارد. اگر ارزش یکی از این خواص را بدانید. شاید بتوانید ارزش دیگری را وضع کنید. ستارگان آبی رنگ داغترین ستارگانند و ستارگان سفید ، سردترند. بعد از اینها ستارگان زرد و نارنجی قرار دارد و سردترین ستارگان ، قرمزند. شاید دمای ستارگان آبی رنگ به 50 هزار درجه سانتیگراد (90 هزار فارنهایت) برسد، حال آنکه دمای سطح ستارگان قرمز تا 2 هزار سانتیگراد (3.600 فارنهایت) پایین است. اصطلاح درخشندگی به پرتوافکنی ستاره با هر طول موجی دلالت میکند. مثلاً با افزایش درخشندگی ستاره ، ممکن است ستاره ، علاوه بر نور مرئی بیشتر ، پرتو مادون قرمز و ماوراء بنفش بیشتری ساطع کند، ولی قدرهای مطلق و ظاهری ، معیار درخشش نور مرئی ستارهاند.
اساساً درخشندگی ستاره بر حسب جرم و مرحله چرخه حیات ستاره تعیین میشود. هر چقدر جرم ستاره بیشتر باشد، در مقایسه با ستارهای با جرم کمتر و در همان مرحله چرخه حیات متراکمتر ، داغتر و درخشندهتر است. 2 ستاره با مساحت و دمای سطحی برابر درخشندگی و رنگ یکسان دارند. اگر ستارهای منبسط شود، دمای سطحش کاهش مییابد. مثلاً زمانی یک ستاره زرد رنگ زنجیره اصلی نظیر خورشید به غول قرمز سردتر ، تاریکتر و خیلی بزرگتری تکامل مییابد. اگر چه از سطح معینی از ستاره تاریک شده (مانند یک کیلومتر مربع یا مایل مربع) پرتو کمتری تابیده میشود. درخشندگیش افزایش مییابد، زیرا مساحت کلش افزایش یافته است و پرتوهای بیشتری امکان مییابند ستاره را ترک کنند. این افزایش درخشندگی به معنای آن است که قدرهای ظاهری و مطلق نیز زیاد میشوند.
منکب الجوزا ابر غول قرمز تپندهای است که چگالی بسیار اندکی دارد. میانگین قطرش تقریباً 400 برابر خورشید است که بدین ترتیب حجمش 64 میلیون برابر حجم خورشید است. چون منکب الجوزا حاوی 13 برابر جرم خورشید است، میانگین چگالیش 3.500 بار از چگالی هوا کمتر است. میانگین چگالی خورشید 1.400 بار از چگالی هوا بیشتر است.
جرم ستاره
جرم ستاره نمایانگر میزان ماده موجود در آن است. واحدهای اندازه گیری جرم ستارگان ، جرم خورشیدی است. هر جرم خورشیدی معادل جرم خورشید است. جرم اکثر ستارگان دیگر بین 0.08 تا 60 برابر جرم خورشیدی است، هر چند که جرم معدودی از ستارگان به 120 برابر جرم خورشیدی میرسد. اگر جرم ستارهای از ستاره دیگر بیشتر باشد، ضرورتاً قطرش بزرگتر نیست زیرا اندازه ستاره به میزان تراکم موادش بستگی دارد. بسیاری از ستارگان برجسته ، اسم دارند. اغلب این اسامی ریشهای عربی دارند که میراث منجمان مسلمان سدههای 8 و 9 میلادی است. اما اکثر ستارگان بینامند. در عوض آنها با نام لاتینی صورت فلکی و حرفی از الفبای یونانی شناسایی میشوند. این سیستم نامگذاری را یوهان بایر (1625-1572) ستاره شناس غیر حرفهای آلمانی ، که در سال 1603 اطلسی از ستارگان را منتشر کرد، ارائه نمود.
بنا به سیستم بایر ، عموماً به درخشندهترین ستاره هر صورت فلکی حرف آلفا (حرف یونانی معادل الف) به ستاره درخشنده بعدی بتا (B=ب) و الی آخر اختصاص داده میشود. به هنگام اشاره به ستارهای خاص ، حالت ملکی نام لاتین صورت فلکی بکار گرفته میشود. مثلاً پر نورترین ستاره صورت فلکی دجاجه به آلفای دجاجه معروف است. چون الفبای یونانی تنها 24 حرف دارد، سیستم بایر محدود است. گاهی حرف یونانی با اعداد زیر نویس شده بکار میروند تا ستارگان نزدیک به یکدیگر شناسایی شوند. مثلاً جبار a5 و جبار a6 از حروف رومی (a,b,c,A,B,C) و اعداد عربی (1،2،3) نیز در نامگذاری ستارگان استفاده میشود.
درخشندگی ستاره
درخشندگی ستاره شدت پرتو افکنی آن است. درخشندگی نور مرئی آن بر اساس قدر اندازه گیری میشود: هر چقدر عدد قدر کمتر باشد، ستاره درخشانتر است. قدر ظاهری درخشندگی جرم سماوی را از دید ناظر زمینی می سنجد: هر چقدر جرم سماوی دورتر باشد، نورش بیشتر سیر میکند، بیشتر پراکنده میشود و کم نورتر به نظر میرسد. قدر مطلق درخشندگی جرم سماوی را در حالتی میسنجد که اگر در فاصله معین 32.6 سال نوری قرار داشت، نورش با آن شدت مشاهده میشد.
چرخههای حیات ستارگان
ستارگان متولد می شوند، میلیونها یا میلیاردها سال می درخشند و سپس می میرند . هر ستاره چرخه حیات چند مرحله ای دارد که در خلال آنها اندازه و دمایش شدیداً تغییر میکند. جرم هر ستاره (میزان ماده موجود در ستاره) تعیین کننده اصلی درازی عمر ستاره و نحوه تکامل آن می باشد. هر چه جرم ستاره بیشتر باشد، در واکنشهای هسته ای گازهایش را سریعتر می سوزاند و زودتر می میرد. پر جرمترین ستارگان برای چند میلیون سال دوام می آورند. آنهایی که جرم کمتری دارند، می توانند تا دهها میلیارد سال بدرخشند.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 16 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
این فایل در قالب ورد و قابل ویرایش در 102 صفحه می باشد.
مقدمه ۱
اهمیت موضوع و دلایل انتخاب آن ۱
فصل اول: ۴
مطالعات پایه ۴
۱ . ۱ ) مطالعات جغرافیایی، اقلیمی، اجتماعی و فرهنگی و …. ۵
۱ . ۲ ) مطالعات پیرامون نجوم ۱۷
۱ . ۲ . ۱ ) مفاهیم پایه و اطلاعاتی از دانش ستاره شناسی ۱۷
جهان، ستارگان، منظومه شمسی، خورشید، سیارات، سیارکها، اقمار، ستارگان دنباله دار، شهاب سنگها، سیاره زمین، اثرات معلول، چرخش زمین، حرکت انتقالی به دور خورشید، ساکن نبودن زمین. ۱۷
چشم غیر مسطح می بیند؟ ۲۳
۱ . ۲ . ۲ ) پیشینه پژوهشهای دانش ستاره شناسی در سرزمین ایران ۲۴
الف ) پیش از اسلام؛ ۲۵
دنیای اساطیر ایرانی و علم نجوم؛ ۲۵
- روحانیت و علم نجوم ۲۶
فصل دوم : ۲۷
مطالعات کالبدی و برنامه ریزی طرح ۲۷
مکانیابی رصدخانه ۲۸
۲ . ۱ ) لزوم پژوهش برای مکانیابی و رصد خانه به همراه معرفی چند نمونه رصدخانه خارجی ۲۸
۲ . ۲ ) پارامترهای مهم در مکانیابی رصدخانه ۳۳
۲ . ۳ ) جدول استانداری های مکان یابی رصدخانه ۳۷
۲ . ۴ ) مکان یابی رصدخانه ملی ایران ۳۹
۲ . ۵ ) پلانتاریم ۴۱
فصل سوم : ۵۲
طراحی ۵۲
۳ . ۱ ) شرح فضاها را استانداردها ۵۳
۳ . ۲ ) برنامه فیزیکی ۶۵
۳ . ۳ ) تجزیه و تحلیل سایت و مکان یابی ۷۱
۳ . ۳ . ۱ ) انتخاب بستر فیزیکی طرح ۷۲
۳ . ۳ . ۲ ) دستریسها ۷۲
۳ . ۳ . ۳ ) مکان یابی ۷۳
۳ . ۳ . ۴ ) سد کینه ورس ۷۴
۳ . ۴ ) دیدگاهها و رویکرد های نظری طراحی: ۷۸
۳ . ۵ ) سازه مجموعه ۸۲
۳ . ۶ ) نیازهای فنی طرح ۸۳
۳ . ۷ ) تعیین جهت استقرار ساختمان ۸۳
۳ . ۸ ) ساختار طرح پلانتاریم مجموعه ۸۴
ضمائم: ۸۶
نقشه ها و مدارک طراحی ۸۶
منابع و مآخذ ۸۷
۱ ) قرآن مجید
۲)کاوش رصد خانه مراغه – پرویز ور جاوند – انتشارات امیر کبیر ۱۳۶۶
۳ ) نگار نامه تاریخی و زندگی نامه دانشمندان نجوم و ریاضی ایران در دوره اسلام – انتشارات سازمان پژوهشهای علمی و صنعتی ایران ۱۳۶۱
۴ ) مجله پیام یونسکو – شماره ۵۹ – تیر ماه ۱۳۵۳
۵ ) مقدمه ای بر تاریخ علم – جرح سارتن – ترجمه صدری افشار – جلد اول و دوم ۱۳۵۳
۶ ) (آشنایی با رصد خانه های دنیا – زیگفرید مارکس، ورنر فاد – ترجمه ملک عبدالی – انتشارات فرهنگی هنری آستان قدس رضوی – ۱۳۷۱)
۷ ) رصد خانه زرتشت در نیمروز، رضا مرادی غیاث آبادی، انتشارات پژوهنده، ۱۳۷۹ )
۸ ) ابنیه و آثار تاریخی مراغه – از انتشارات اداره کل آموزش و پرورش آذربایجان شرقی
۹ ) کتاب اسطلاب یا شمارشگر نجومی – تالیف سر فراز غزنی – تهران ۱۳۵۶
۱۰ ) تاریخ نجوم اسلامی – کرلو الفونسو نلینو – ترجمه احمد آرام، تهران ۱۳۴۹
۱۱ ) تاریخ وصاف الحضره در احوال سلاطین مغول – فضل الله شیرازی – تهران ۱۳۳۸ – جلد اول
۱۲ ) رساله شرح آلات رصد – مهندس موید الدین عرضی
۱۳ ) طرح مجموعه علمی و تاریخی خواجه نصیرالدین طوسی ( در کنار سایت تاریخی رصد خانه مراغه) به راهنمایی مهدی شیبانی ۱۳۷۶ شهرام باباخانیان
۱۴) بررسی نظری و عملی روشنایی آسمان در مکان یابی رصد خانه های بزرگ – صونا حسینی ۱۳۸۵
۱۵) مکان یابی رصد خانه ملی ایران (لرزه شناسی و هواشناسی) علی اکبر نبی خانی
۱۶) مرکز تحقیقات نجوم و اختر فیزیک مراغه – احمد پناهی ۱۳۸۵ دانشگاه گیلان
۱۷)کارش رصد خانه مراغه : دکترپرویز ورجاوند ، انتشارات امیر کبیر تهران ۱۳۶۶
۱۸) طرح و توسعه و عمران و حوزه نفوذ مراغه، مهندسین مشاور، زیست ، تهران تیر ماه ۱۳۶۹
۱۹) بهینه بندی اقلیمی ایران. مسکن و محیط های مسکونی، ذکر تحقیقات ساختمان ، مسکن ، تهران پاییز ۱۳۷۲
۲۰) راهنمای طراحی معماری ساختمانهای بلند مسکونی ، مهندس ژاله طلابی ، مرکز تحقیقات ساختمان و مسکن ، تهران ، پاییز ۱۳۷۵
۲۱)مجله آبادی، سال پنجم شماره هفدهم ، تهران تابستان ۱۳۷۴
۲۲)آئین نامه طرح ساختمانهای در برابر زلزله، مرکز تحقیات مسکن تهران بهمن ۶۶
۲۳) نویفرت
مکانیابی رصدخانه
در زمانهای گذشته هر نقطه ای که در برسی های ساده مناسب به نظر می رسید، رصدخانه ها را بنا می کردند.
امروزه مسائل مختلفی در بر پایی یک رصدخانه مطرح شده که بدون گرفتن آنها، امکان تاسیس وجود ندارد.
با پیشرفت تکنولوژی ظرافت و دقت بکار رفته در ادوات و دستگاههای مختلف بیشتر می شود و به همان اندازه ارزش دستگاهها بالاتر می رود. به لحاظ پرهزینه بودن ساخت رصدخانه های بزرگ و حساسیت دستگاههای مورد استفاده لازم است احداث این رصدخانه در محل مناسب انجام گرفته و امکان سنجی دقیق تری که امروزه در دنیا مرسوم است صورت گیرد. به عنوان مثال؛ هزینه ساخت تلسکوپ ۱۰ متری کک مبلغی معادل ۸۰ میلیون دلار بود که تقریباً معادل بودجه یک کشور است. از بیشترین توان یک تلسکوپ هنگامی می توان استفاده کرد که شرایط پیرامون آن، از پوسته پوشاننده گرفته تا مکان جغرافیایی ویژه آنها متناسب انتخاب شده باشند. منظور از مکان یابی، انتخاب مناسبترین مکان از لحاظ پارامترهای هواشناسی و نجومی و محلی آن است.
نصب و استقرار تلسکوپ های اپتیکی بزرگ که بتوان رصد ستارگان را بادقت و کیفیت بهتر نسبت به جاهای دیگر امکان پذیر سازد، مستلزم مطالعه دقیق دربارهی عوامل موثر در دید و سایر به پارامترهای مکان یابی و استفاده از تجهیزات متنوع برای اندازه گیری این پارامترها می باشد. به این ترتیب، تردیدی نیست که برای استفاده و بهره برداری هر چه بیشتر از این ابزارها و مراقبت در نگهداری سرمایه کلانی که صرف آن شده بهترین مکان انتخاب شود تا از نظر بهره وری دچار مشکلی نشویم.
جای مناسب برای یک رصد خانه اپتیکی، مکانی است که بیشترین شبهای صاف و بدون ابر را در طول داشته و واضح ترین تصاویر را از جرم آسمانی بدهد. کیفیت تصویر در یک تلسکوپ، وابسته به حرکت توده های هوا و تلاطم موجود در جو است.
پژوهشهایی که در این زمینه صورت گرفته نشان می دهد که برای انتخاب یک نقطه باید مکان هایی را در نظر گرفت که بلندی آنها در نزدیکی اقیالنوسها بیش از دو هزار متر و در داخل خشکی ها بیش از سه هزار متر از سطح دریاهای آزاد باشد. می توان تصور نمود که چون اتمسفر زیمن مهمترین عامل در چگونگی تصویر اجرام آسمانی در یک تلسکوپ می باشد، برای رهایی از آن بهتر است از تلسکوپ در مدار زمین و یا ساخت یک رصد خانه در کره ماه استفاده نمود.
در حقیقت هم اکنون نیز بسیاری از پژوهشگران مشغول انجام چنین مطالعاتی می باشند. ولی هزینه استفاده از راکت ها و قمر های مصنوعی بسیار زیاد است و به تکنولوژی پیشرفته ای نیازمند می باشد. در ضمن زمینه ساز انجام چنین پژوه هایی رصد خانه های زمینی می باشند که راه را برای پژوه های کامل تر و مدرن تر باز می کنند.
اتمسفر به راههای گوناگونی در رصدهای نجومی که روی زمین انجام می گیرد، اثر می گذارد. تغییر جهت انتشار نور و تغییر شدت نور رسیده به زمین از این مسئله ناشی می شوند.
در مناطق خشک سطح زمین در شب به سرعت سرد می شود و این انرژی فقط به مقدار بسیار کمی به وسیله هوای بدون بخار آب جذب می شود از این رو نزدیک سطح زمین هوا سردتر است. ولی در لایه های بالاتر اتمسفر تغییرات دما بسیار کم می باشد (مگر این که وزش باد به قدر کافی باشد) . در مناطق خشک این کم شدن سریغ دما در شب که مدت چند ساعت ممکن است دوام داشته باشد می رساند که توده ا از هوای سرد به محوطه مورد نظر در حال حرکت است و کم شدن سریع دما همیشه با دید بد همراه است. حال آن که دمای ثابت با افزایش بسیار کم دما در شب دید خوب را به همراه دارد تغییرات روزانه دما در محلی که مناسب رصد خانه باشد بایستی تا حد ممکن کمتر باشد. در درجه اول این تغییرات در شب می بایستی بسیار کم و ناچیز باشد که شکل آینه تلسکوپ در طول شب ثابت بماند و کوچک بودن این تغییرات در روز نیز سبب می شود تا از ذخیره گرما در داخل گنبد جلوگیری شود به تجربه معلوم شده است که در قله کوه ها معمولاً تغییرات دما کمتر است و حال آن که تپه های کوچک در یک فلات معمولاً کاهش زیاد دما را در شب نشان می دهد. تلسکوپ باید در بالای کوه و در نزدیکی پرتگاهی قرار داده شود که به سوی آن باد می وزد. چنین علمی آشفتگی هوای اطراف تسلکوپ را که ممکن است به خاطر توپوگرافی نا مناسب بالای قله باشد، در نزدیکی دهانه تسلکوپ به حداقل می رساند.
دوری از شهر ها و مراکز صنعتی از شرایط اصلی انتخاب جای مناسب برای رصد خانه است آلودگی هوا در نزدیکی مراکز تجمع نور چراغهای شهر ها در شب سبب خطا در نتیجه رصد ها می شوند. و باید از آنها پرهیز نمود در ضمن باید بتوان پیش بینی نمود که توسعه شهر سازی در آینده در آن حوالی رخ ندهد.
از این رو انتخاب کوهی مرتفع در ناحیه ای با رطوبت کم با این که از نقطه نظر آسایش و زندگی برای پژوهشگران و کار کنان رصد خانه کمی مشکل خواهد بود ولی این امتیاز را نیز دارد که در آینده ای نزدیک شهری در حوالی آن بوجود نخواهد آمد.
به طور کلی از روی پژوهشهای انجام شده می توان گفت که یک رصد خانه پژوهشی از شهری که دویست هزار نفر جمعیت دارد باید حداقل ۲۵ کیلومتر و از شهر یک میلیونی حداقل ۳۵ کیلومتر و از شهر چهار میلیونی حداقل ۴۵ کیلومتر به دور باشد. (۹). به طوری که همیشه اثر نوع چراغ ها در شب در سمت الراس نا چیز و در چهل و پنج درجه از افق در سوی چشمه نور از یکدهم واحد قدر ستارگان کمتر باشد و این موضوع را می توان با یک نور سنج معمولی تحقیق نمود.
در بعضی نقاط ،رفت و آمد هواپیما ها موجب اعتشاش در جو می شوند و ممکن است تا چه شب کار با تلسکوپ را بی فایده سازد . بنابراین عوامل مختلفی در انتخاب محل رصد خانه موثر است که از این رو بایستی شرایط کلی آب و هوایی و عوامل محلی و توپوگرافی موثر دردید را مورد توجه قرار داد.
بهتر است تلسکوپ را در بالای کوهی بلند قرار دهیم و مخصوصاً بهتر است که این کوه مجزا و بلند تر از کوه ها مجاور خود باشد به نحوی که از سطح افق تا زاویه ۱۵ درجه اطراف در تمامی جهات مانعی برای رصد وجود نداشته باشد.
نکته دیگری که باید به آن توجه داشت این است که پس از ایجاد رصد خانه پروژه های آبادانی دیگری که در منطقه صورت می گیرد مشکلاتی برای رصد خانه ایجاد نکنند. مثلاً ایجاد جنگل مصنوعی و یا دریاچه های مصنوعی می توانند تاثیر منفی در شرایط اقلیمی منطقه از نظر نجومی ایجاد کند.
به طور کلی پارامتر های مهم در مکانیابی و عمدتاً به سه دسته تقسیم می شوند.
الف ) پارامتر های هوا شناسی :
مانند: پوشش ابری ، سرعت و جهت باد، تغییرات دما در طول شب، تغییرات فشار، لایه های وارونگی دمائی و تعداد وقوع در ارتفاع این لایه ها، رطوبت و ….
ب ) پارامتر های نجومی :
مانند : تعداد شب های مناسب برای طیف سنجی، کیفیت دید محل، چشمک زنی، کدورت، روشنایی و آسمان و ….
ج ) پارامتر هالی محلی :
مانند : ژئوفیزیک عمومی ، آلودگی نوری، جنس زمین مورد نظر (پوشش گیاهی و ضریب جذب نور) دسترسی آب، برق، مخابرات، جاده اصلی و …..
مهمترین پارامتر جهت مکان یابی سایت رصد خانه پارامتر دید می باشد. دید بر اثر دما، فشار و وزش باد، در جوّ آشفتگی ایجاد می شود و این آشفتگی موجب تغییر چگالی محلی و در نتیجه ضریب شکست محیط می شود به طوری که بر جبهه موج دریافتی از جرم آسمانی اثر می گذارد. این پدیده را تلاطم جوّ می گویند.
تاثیر این تلاطم باعث جابه جایی تصور در زمان های نور دهی بالا می شود یا اینکه سنجش اندازه های بسیار کوچک و تشخیص جزییات را در اجرام آسمان کاهش می دهد. برای اندازه گیری این جابه جایی می توان از عکسبرداری رد ستاره ها توصیف ستاره قطبی را استفاده از CCD آست نور اختلال در نور ستاره یا جرم آسمانی موجب پراکندگی نور آن می شود. به این ترتیب سنجش دید با استفاده از این تصاویر قابل محاسبه است. برای مکان های مناسب و خوب کمیت دید بین نیم تا یک و نیم ثانیه قوس است. در بهترین نقاط رصدی شناخته شده در دنیا همچون کوه موناکی درها وایی، سرو پارانال در شیلی و یا موتت ویلسون ، به علت ثبات هوا دید حتی گاهی بهتر از این می شود.
کمیت دید، نشان دهنده توان واقعی تفکیک است. به عنوان مثال به طور نظری توان تفکیک یک تلسکوپ ۲۰ سانتی متری حدود یک ثانیه قوس است اما به دلیل آشفتگی جوی در عمل چنین تفکیکی در توان یک تلسکوپ یک متری یا بزرگتر در محل مناسب رصدی است. بر اثر آشفتگی جوّ، تصویر ستاره پخش می شود. قطر ظاهری آن ممکن است به یک ثانیه قوس یا بیشتر برسد، به طوری که ستاره ای در فاصله ای کمتر از این مشخص نخواهد شد.
پارامتر دیگر چشمک زدن است، این پارامتر در تعیین محل رصد خانه نقش موثری ندارد و بر تغییر شار نور ستاره و یا دامنه تغییرات نوری به وجود می آید. این تغییرات عمدتاً ناشی از گذر نور ستاره از محیط میان ستاره ای در بین ما و آن ستاره است. این پدیده که در اپتیک های بزرگ مشخص است، با چشمک زدن ستاره ها که با چشم غیر مسلح دیده می شود، متفاوت است. چشمک زدن ستاره ها در رصد با چشم غیر مسلح یا پرش نور ستاره ها در رصد یا تسلکوپ ناشی از شکست نور آنها در جوّ است.
کمیت مهم دیگر کدورت جوّی می باشد که بر اثر جذب نور در ماده موجود بین ستاره و ما (مثل جوّ زمین) به وجود می آید. این کمیت در محل های مختلف به علت وجود گرد و غبار، بخار، آب و عناصر دیگر متفاوت است. محل های نزدیک کارخانجات سیمان و یا دشت های کویری دارای کدورت جوی زیادی هستند.
به طور کلی رصد خانه در محلی احداث می شود که کمترین دید را داشته باشد. کمیتهای دیگر در طی شبهای رصدی اندازه گیری می شوند و تصحیح می گردند.
کمیت مهم دیگری که در طی سالهای گذشته مشکلات زیادی را برای رصد خانه ها و منجمان ایجاد کرده است، آلودگی نوری می باشد که به دلیل نور مصنوعی شهر ها و روستا ها و …. ایجاد می شود برای استقرار تلسکوپ یک متری حدود ۳۰ کیلومتر از روستا و ۱۰۰ کیلومتر از شهر ها باید فاصله گرفت. البته این کمیت تقریبی، به محل رصد خانه و کوه ها و شهر های اطراف بستگی دارد. استفاده از روشنایی هایی با سر پوش مناسب و چراغ های جیوه ای با نور کم در شهر ها یا روستا های نزدیک به رصد خانه، در کاهش آلودگی نوری بسیار موثر است که در این رساله به طور کامل در این باره صحبت خواهیم کرد و روشهای حذف آن را بیان خواهیم نمود. قسمتی از آلودگی نوری موجود مربوط به روشنایی آسمان می باشد که نور رسیده از زمینه آسمان است که نمی توان آن را حذف کرد.
موسسه بین المللی اختر شناسی که در اکثر کشور ها شعبه دارد، هر ساله سمینار سالانه اختر شناسی را در یکی از کشور های جهان برگزار می کنند تا آخرین دستاورد های اختر شناسی را در اختیار دانشمندان قرار دهد و در این باره تبادل نظر انجام دهد.
لازم به ذکر است که تنها رصد خانه ای معتبر به شمار می آید که از این استاندارد ها در مکانیابی و ساخت تبعیت کرده باشد و تحقیقات این رصد خانه ها به عنوان تحقیقات معتبر در سطوح جهان مطرح می شوند طبیعی است رصد خانه ای که دارای استاندارد های این مرکز نباشد نمی تواند تحقیقات خود را به عنوان تحقیق علمی اثبات شده معرفی کند همچنین موسسه ذکر شده به تمام رصد خانه های معتبر جهان کمک مالی می کند و این موضوع در توجیه اقتصادی رصد خانه به خصوص در کشوری همانند ایران تاثیر به سزایی خواهد گذاشت.
موقعیت کشور هایی پیرامون و همچنین وضعیت رصد خانه های ما، بعنوان کشوری که روزی بزرگترین رصد خانه های جهان را می ساخته است، جامعه نجوم کشور را بر آن داشت که موضوع مکانیابی رصد خانه ملی را به طور جدی از حدود پنج سال پیش آغاز کند و در این مدت با تلاشهای مستمر، مناطق مختلف کشور از دیدگاه هواشناسی و محلی مورد بررسی قرار گرفت. در گام نخست پوشش ابری مکانهای مختلف ایران مورد مطالعه قرار گرفت و از میان آنها، ۳۱ منطقه که از شبهای صاف بیشتری نسبت به سایر مناطق بر خوردار بودن برای این موضوع نامزد شدند. در گام بعدی سرعت و جهت وزش باد بعنوان مهمترین عامل ایجاد کننده تلاطم جوی مورد بررسی قرار گرفت و از میان این ۳۱ گزینه، چهار منطقه قم، کاشان و کرمان و خراسان جنوبی که دارای باد آرام بیشتری نسبت به سایر مکانها انتخاب شدند (۱۳ و ۱۲) و در مرحله بعدی این چهار منطقه از لحاظ هواشناسی و ژنوفیزیکی بطور دقیق که بیشتر بعنوان موضوع پایان نامه دانشجویان کار شناسی ارشد مطرح شده مورد مطالعه و بررسی قرار گرفت و مطالعه و بررسی قرار گرفت و مطابق جدول (۱ – ۵) هر کدام از این مناطق در جایگاههای متفاوتی قرار گرفتند.
علاوه بر اقدامات مذکور، دکتر سارازین از رصد خانه جنوبی اروپا که از متخصصان تراز اول مکانیابی به شمار می آید و دکتر گاین از آمریکا به اتفاق آقای دکتر نصیری از ارتفاعات منطقه کاشان بازدید نموده و برای انتخاب مکان های مناسب مورد مشورت قرار گرفتند و یک کار گاه آموزشی در این زمینه به اتفاق افراد فوق و تعدادی دیگر از متخصصان در مرکز تحصیلات تکمیلی علوم پایه زنجان برگزار گردید.
در ادامه کار ضروری بود که یک مطالعه آماری از وضعیت دید مناطق مذکور که به عنوان مهمترین پارامتر مکانیابی در انتخاب نهایی تعیین کننده است، انجام گیرد. برای این منظور در تیر ماه ۱۳۸۳ کار گاه مکانیابی رصد خانه ملی ایران در مرکز علمی و کتب به عمل آمد و از میان شرکت کنند گان چهار گروه دو نفره برای بررسی دید هر کدام از مناطق چهار گانه انتخاب شدند. سپس آموزشهای لازم به این گروه ها ارائه شد.
از اویل شهریور ماه ۱۳۸۳ دکتر نصیری و دکتر درودی طی چندین سفر به اتفاق گروههای مکانیابی هر استان از محلهای مختلف در چهار منطقه کرمان، کاشان، قم و خراسان جنوبی بازدید کرده و ضمن بررسی وضعیت توپوگرافی و شرایط اقلیمی محل ها مختلف، به طور میانیگین دو شب در هر محل با دستگاه DIMM داده برداری دراز مدت انتخاب نمودند، هر منطقه کرمان محل سر در، در منطقه کاشان محل کلاه برفی، در منطقه قم محل فرد و در منطقه خراسان جنوبی، منطقه مزار گاهی انتخاب شدند. سپس هر گروه را با تجهیزات کامل دستگاه DIMM در این مکانها مستقر کردند. هم اکنون بعد از یک سال داده برداری مستمر پارامتر دید سایت خراسان جنوبی حذف گردید و مطالعات جهت انتخاب بهترین محل ادامه خواهد داشت.
قابلیت ویرایش : دارد
تعداد صفحات اسلاید : 16
برای خرید برید پایین!
درخواست یا سفارش پاورپوینت : تلگرام یا پیامک : 09392481506