فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله ی 5 اصل اقلیدس قابل ویرایش در قالب ورد 4ص

اختصاصی از فی ژوو دانلود مقاله ی 5 اصل اقلیدس قابل ویرایش در قالب ورد 4ص دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله ی 5 اصل اقلیدس قابل ویرایش در قالب ورد 4ص


دانلود مقاله ی 5 اصل اقلیدس قابل ویرایش در قالب ورد 4ص

-    از هر دو نقطه متمایز ، یک و فقط یک خط می گذرد .

2-    هر پاره خط AB را می توان به اندازه پاره خط BE که با پاره خط CD قابل انطباق است ادامه داد .

3-    به ازای هر نقطه و هر پاره خط دلخواه ، دایره ای به مرکز آن نقطه وشعاع مذکور وجود دارد .

4-    همه زوایای قائمه با هم برابرند .

5-    اصل توازی :

چهار اصل اول همواره مورد توافق ریاضیدانان بوده اند .  اما اصل توازی تا قرن 19 مورد بحث و جدل فراوان قرار گرفته است . تلاش برای اثبات آن و ارائه صورتهای مختلفی از آن صور ت گرفته است . که همین تلاشها باعث ایجاد و بسط هندسه های نااقلیدسی شده است .

تعریف (توازی ):

دو خط با هم موازی اند هرگاه همدیگر را نبرند ، یعنی نقطه ای پیدا نشود که بر هر دو خط واقع باشد .

اصل توازی : به ازای هر خط و هر نقطه غیر واقع برآن یک و تنها یک خط به موازات خط مذکور وجود دارد که از نقطه مورد نظر می گذرد .

 

اگر ما اصول هندسه را انتزاعهایی از تجربه بدانیم بلافاصله تفاوت این اصل و چهار اصل دیگر مشخص می شود . به هیچ وجه نمی توانیم به طور تجربی تحقیق کنیم که آیا دو خط همدیگر را می برند یا نه .

 

معادلهای اصل 5 :

 

اگر یک خط ، دو خط موازی را قطع کند همه زوایای حاده بوجود امده باهم و همه زوایای منفرجه به وجود آمده باهم مساوی اند .

مجموع زوایای داخلی یک مثلث 180 درجه است .

اگر خطی یک خط موازی را ببرد دیگری را هم می برد.

هرگاه خطی بر یک خط موازی عمود شود بر دیگری نیز عمود می شود .

هرگاه k و l دو خط موازی باشند و m بر k عمود باشد و n بر l عمود باشد آنگاه یا m=n یا m با n موازی است .


دانلود با لینک مستقیم


دانلود مقاله ی 5 اصل اقلیدس قابل ویرایش در قالب ورد 4ص