فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد آموزش SQL Server

اختصاصی از فی ژوو مقاله در مورد آموزش SQL Server دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد آموزش SQL Server


مقاله در مورد آموزش SQL Server

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:9

 

  

 فهرست مطالب

 

 مفاهیم ابتدائی

مقدمه :‌

کاربرد روز افزون بانک اطلاعاتی
SQL مرا بر آن داشت تا مطالبی هر چند کوتاه جهت خوانندگان محترم سایت تهیه نماییم. قبلا از هر چیز لازم به ذکر است که مطالب ذیل در حد آشنایی بوده و دوستا برای دستیابی به تکنیکهای بیشتر می بایست از کتابهای مرجع و Book online خود SQL Server استفاده نمایند. در مطالب زیر که سلسله وار مباحث SQL Server را مرور خواهیم کرد , سعی شده تا ابتدا مطالب مقدماتی جهت آشنایی آورده شود و سپس اگر عمری باقی بود به مطالب پیشرفته آن بپردازیم. همچنین برای یادآوری خدمت دوستان ابتدا مرور سریعی بر چند دستور SQL که کاربرد بیشتری دارند خواهیم پرداخت و سپس به SQL Server و مطالب آن خواهیم پرداخت . مطالب زیر اکثرا از کتاب Microsoft SQL Server 7.0 Database Implementation Training انتخاب گردیده است . این کتاب به همراه CD‌آموزش آن به عنوان یک مرجع برای امتحانات مایکروسافت استفاده می‌شود.

جداول بکار رفته نیز همگی در SQL Server 7.0 در Database Northwind موجود هستند.

دستور Select

این دستور که دستوری مستقل نیست و حتما باید با اجزایی بکار رود جهت ساخت پرس و جو بر روی بانک اطلاعاتی بکار می‌رود و رکوردهایی که با شرایط این دستور همخوان باشد به عنوان نتیجه پرس و جو برمی‌گرداند . چهار کلمه کلیدی وجود دارند که بخشهای ارزشمند این دستور را تشکیل می‌دهند :

1- select

2- from

3- where

4- order by


شکل کلی دستور :

Select [*|distinct column1, column2,…]

From table[,table2,…]

Where شرط

Order by نام فیلد یا شماره فیلد

مثال :

Select * from customers

این دستور تمام رکوردهای جدول customers را برمی‌گرداند.

که نتیجه 91 سطر از اطلاعات این جدول خواهد بود

حال اگر شرط Country ='uk' اضافه کنیم ، فقط اطلاعات مشتریان انگلیس جواب خواهند بود که به 7 سطر تقلیل می‌یابد.


select * from customers

where Country ='uk'

حال

select City,Country from customers

order by city

فقط ستونهای نام شهر (city) و نام کشور (Country) را بر گردانده و بر اساس نام شهر مرتب میکند. دستور بالا با دستور پایین هردو یک جواب را میدهند :

select City,Country from customers

order by 1

که 91 سطر بازگردانده خواهد شد . در نتیجه پرس و جو تعدادی سطر تکراری وجود دارد مانند شهر London که اگر از کلمه Distinct‌ در Select استفاده کنیم این سطرهای تکراری حذف خواهد شد .

select distinct City,Country from customers

order by 1

و جواب 69 سطر خواهد بود.

استفاده از توابع در Select

1- Count : تعداد سطرهای بازگردانده شده توسط select را میشمارد.

Select Count(*) from Customers

where Country ='uk'

در اصل تعداد مشتریانی را میشمارد که در کشور انگلیس هستند. که عدد 7 جواب است.

2- Sum : مجموع یک فیلد عددی را برمی‌گرداند.

Select sum(Quantity) from [Order Details]

where productid = 11

مجموع فیلد Quantity را برای فیلدهایی که شماره محصول آنها ( Productid) برابر 11 است را محاسبه میکند

نکته 1 : در دستور select می‌توان از اسم مستعار استفاده کرد ، یعنی نام جدیدی را برای یک ستون در نظر گرفت به عنوان مثال select قبل را به شکل زیر بکار برد :

Select sum(Quantity) as Sum_QTY

from [Order Details]

where productid = 11

که Sum_QTY یک اسم مستعار برای مجموع است. استفاده از کلمه کلیدیas ‌اختیاری است.

نکته 2 : در دستور select هرگاه اسم فیلدی اسم خاص باشد و یا فاصله بین اسم باشد مثل Order Details که فاصله بین اسم جدول است حتماُ از علامت براکت [] میبایست استفاده کرد.

نکته 3 : استفاده از group by :

هنگامی که از توابع count ‌ و Sum به همراه یک فیلد دیگر در دستور select استفاده می‌شود از group by استفاده می‌کنیم .

به عنوان مثال دستور زیر جمع مقادیر فیلد Quantity را برای هر شماره محصول محاسبه میکند .

Select productid, sum(Quantity) as sum_qty

from [Order Details]

group by productid

که نتیجه مانند زیر خواهد بود :

productid sum_qty

----------- -----------

61 603

3 328

32 297

6 301

41 981

64 740

9 95

12 344

در صورتیکه دستور ordr by 1 بعد از group by استفاده کنیم نتیجه بر اساس کد محصول مرتب خواهد شد.

نکته 4 : دستور where می تواند خود شامل یک دستور select باشد :

select * from Products

where ProductID in

( select distinct ProductID from [order details] where Quantity >70)

order by ProductID

تنها نکته ای که می بایست توجه کرد این است که نام فیلدی که در شرط آورده می شود حتما در دستور select آورده شود, به عبارت دیگر select درون شرط تنها یک ستون را می بایست برگرداند .

تمرین : با فرض اینکه دو جدول Products و order details دارای ستون (فیلد) یکسان ProductID هستند , یک دستور Select بنویسید که تمام فیلدهایی از Products را نشان دهد که فیلد ProductID آن با ProductID جدول order details یکی باشد.؟

 


دانلود با لینک مستقیم


مقاله در مورد آموزش SQL Server

پروژه سایت کامپیوتری به زبان phpبا پایگاه داده my sql

اختصاصی از فی ژوو پروژه سایت کامپیوتری به زبان phpبا پایگاه داده my sql دانلود با لینک مستقیم و پر سرعت .

پروژه سایت کامپیوتری به زبان phpبا پایگاه داده my sql


پروژه سایت کامپیوتری به زبان phpبا پایگاه داده my sql امکانات کلی: ارسال سفارش,محصولات ما،تماس با ما,ثبت نام در سایت,درج محصول,ارسال اخبار,مدیریت پیوندها,مدیریت نظرات,مدیریت کاربران,مدیریت اخبار و سایر دیگر ......

دانلود با لینک مستقیم


پروژه سایت کامپیوتری به زبان phpبا پایگاه داده my sql

پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعات(همراه با عکس)

اختصاصی از فی ژوو پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعات(همراه با عکس) دانلود با لینک مستقیم و پر سرعت .

پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعات(همراه با عکس)


پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعات(همراه با عکس)

 

 

 

 

 

 

 

فرمت فایل:word  (قابل ویرایش)

تعداد صفحات :236

فهرست مطالب :

چکیده
پیاده سازی آن روی بانک اطلاعاتی دانشگاه آزاد قوچان
مقدمه ای بر داده کاوی 
1-2-عامل مسبب پیدایش داده کاوی 
-3-داده کاوی و مفهوم اکتشاف دانش (K.D.D) 
- پاکسازی داده ها 
2-یکپارچه سازی داده ها 
3-انتخاب داده ها 
1-3-1-تعریف داده کاوی 
1-3-3- قابلیت های داده کاوی
1-3-4-چه نوع داده‌هایی مورد کاوش قرار می گیرند؟ 
• فایلهای ساده (FLAT FILES):
• پایگاههای داده ای رابطه ای(RDBMS): 
1-4- وظایف داده کاوی 
1-4-3-1-1- کشف تقسیمات 
1-4-3-1-2- دسته بندی با درخت تصمیم
1-4-3-1-4- نحوه‌ی هرس کردن درخت
1-4-3-1-3- انواع درخت‌های تصمیم
1-4-3-3-1 تئوری بیز 
1-4-3-3-2 -دسته بندی ساده بیزی
یک مثال در توضیح طبقه بندی ساده بیزی 
1-4-4- ارزیابی روش‌های کلاس‌بندی
-2-4-1پیش بینی 
1-4-3-انواع روش‌های پیش بینی 
1-4-3-1- رگرسیون
1-4-3-1 -1- رگرسیون خطی
1-4-3-1-2- رگرسیون منطقی
1-4-3- خوشه بندی
1-4-3-1- تعریف فرآیند خوشه‌بندی

1-4-3-2- کیفیت خوشه‌بندی
1-4-3-3- روش ها و الگوریتم‌های خوشه‌بندی
1-4-3-3-1- روش های سلسله‌مراتبی ‌
1-4-3-3-2- الگوریتم‌های تفکیک
1-4-3-3-3- روش‌های متکی برچگالی 
1-4-4- تخمین
1-4-3-3-5- روش‌‌های متکی بر مدل 
1-6-قوانین انجمنی
1-6-3- اصول استقرا در کاوش قوانین انجمنی
1-6-4- الگوریتم Apriori
1-7-3-1- جستجو و بازیابی
1-7-3-2- گروه بندی و طبقه بندی داده
1-7-3-3- خلاصه سازی
1-7-3-4- روابط میان مفاهیم
1-7-3-5- یافتن و تحلیل ترند ها
1-7-3-5- برچسب زدن نحوی (POS)
1-6-2-7- ایجاد تزاروس و آنتولوژی به صورت اتوماتیک 
1-8-تصویر کاوی 
1-2-مقدمه
2-2- اصول الگوریتم ژنتیک 
2-2-1-1-3- کدگذاری درختی 
2-2-2- ارزیابی2
2-2-3-انتخاب 
2-2-3-2- انتخاب رتبه ای 
2-2-4- عملگرهای تغییر
2-2-3-4-نخبه گزینی 
2-2-4-1-عملگر Crossover
2-2-4-3-احتمال Crossover و جهش
2-2-6-دیگر پارامترها
2-4-مزایای الگوریتم های ژنتیک
2-5- محدودیت های الگوریتم های ژنتیک
شبکه های عصبی 
فصل سوم
3-1-چرا از شبکه های عصبی استفاده می کنیم؟ 
3-3-نحوه عملکرد مغز 
3-4-مدل ریاضی نرون
3-5- آموزش شبکه‌های عصبی 
3-6-کاربرد های شبکه های عصبی
فصل چهارم
محاسبات نرم
4-2-2-مجموعه های فازی
4-2-3-نقش مجموعه¬های فازی در داده¬کاوی
4-2-3-1- خوشه بندی 
4-2-4- الگوریتم ژنتیک
4-2-5-نقش الگوریتم ژنتیک در داده کاوی
5-1- نحوه ی انتخاب ابزارداده کاوی 
5-3- چگونه می توان بهترین ابزار را انتخاب کرد؟ 
منابع وماخذ
مقدمه ای بر داده کاوی 
1-1-مقدمه 
امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد .با استفاده از ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها خیلی بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شوند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است .از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند .
داده کاوی یکی از مهمترین این روش ها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند .
1-2-عامل مسبب پیدایش داده کاوی 
اصلی ترین دلیلی که باعث شده داده کاوی کانون توجهات در صنعت اطلاعات قرار بگیرد، مساله در دسترس بودن حجم وسیعی از داده ها و نیاز شدید به اینکه از این داده ها, اطلاعات و دانش سودمند استخراج کنیم. اطلاعات و دانش بدست آمده در کاربردهای وسیعی مورد استفاده قرار می گیرد.
داده کاوی را می توان حاصل سیر تکاملی طبیعی تکنولوژی اطلاعات دانست، که این سیر تکاملی ناشی از یک سیر تکاملی در صنعت پایگاه داده می باشد، نظیر عملیات جمع آوری داده ها وایجاد پایگاه داده، مدیریت داده و تحلیل و فهم داده ها. 
تکامل تکنولوژی پایگاه داده و استفاده فراوان آن در کاربردهای مختلف سبب جمع آوری حجم فراوانی داده شده است. این داده های فراوان باعث ایجاد نیاز برای ابزارهای قدرتمند برای تحلیل داده ها گشته، زیرا در حال حاضر به لحاظ داده ثروتمند هستیم ولی دچار کمبود اطلاعات می باشیم. 
ابزارهای داده کاوی داده ها را آنالیز می کنند و الگوهای داده ها را کشف می کنند که می توان از آن در کاربردهایی نظیر تعیین استراتژی برای کسب و کار، پایگاه دانش و تحقیقات علمی و پزشکی، استفاده کرد. شکاف موجود بین داده ها و اطلاعات سبب ایجاد نیاز برای ابزارهای داده کاوی شده است تا داده های بی ارزش را به دانشی ارزشمند تبدیل کنیم . 
-3-داده کاوی و مفهوم اکتشاف دانش (K.D.D) 
با حجم عظیم داده های ذخیره شده در فایلها، بانکهای اطلاعاتی و سایر بانک های داده ای، توسعه ی ابزارهایی برای تحلیل و شاید تفسیر چنین داده هایی و برای استخراج علوم شگفت انگیزی که می توانند در تصمیم گیری مفید باشند، امری بسیار مهم و ضروری است. داده کاوی با عنوان کشف دانش در پایگاه های داده (KDD) شناخته می‌شود. کشف علومی که قبلا ناشناخته بوده‌اند و اطلاعاتی که در بانکهای اطلاعاتی موجود بوده و ذاتا بالقوه و مفید هستند.
با وجود آنکه داده کاوی و کشف دانش در پایگاه‌های داده مترادف همدیگر هستند، ولی در اصل، داده کاوی ذاتاً بخشی و تنها قسمتی جزئی از فرآیند کشف دانش است. فرآیند کشف دانش در بر گیرنده ی چندین مرحله می باشد که از اطلاعات خام، گونه هایی از علوم جدید را بدست می دهد. مراحل کشف دانش به قرار زیر است:
1- پاکسازی داده ها : در این فاز داده های اضافی و نامربوط از مجموعه داده ها حذف می شوند.(داده های ناکامل) [2]
2-یکپارچه سازی داده ها : چندین منبع داده ترکیب می شوند،
3-انتخاب داده ها : انبار داده ها شامل انواع مختلف و گوناگونی از داده ها است که همه آنها در داده کاوی مورد نیاز نیستند . برای فرایند داده کاوی باید داده ها ی مورد نیاز انتخاب شوند . به عنوان مثال در یک پایگاه داده های مربوط به سیستم فروشگاهی ، اطلاعاتی در مورد خرید مشتریان ، خصوصیات آماری آنها ، تامین کنندگان ، خرید ، حسابداری و ... وجود دارند . برای تعیین نحوه چیدن قفسه ها تنها به داده ها یی در مورد خرید مشتریان و خصوصیات آماری آنها نیاز است . حتی در مواردی نیاز به کاوش در تمام محتویات پایگاه نیست بلکه ممکن است به منظور کاهش هزینه عملیات ، نمونه هایی از عناصر انتخاب و کاوش شوند . 
4-تبدیل داده ها : هنگامی که داده های مورد نیاز انتخاب شدند و داده های مورد کاوش مشخص گردیدند، معمولا به تبدیلات خاصی روی داده ها نیاز است. نوع تبدیل به عملیات و تکنیک داده کاوی مورد استفاده بستگی دارد، تبدیلاتی ساده همچون تبدیل نوع داده ای به نوع دیگر تا تبدیلات پیچیده تر همچون تعریف صفات جدید با انجام عملیاتهای ریاضی و منطقی روی صفات موجود.
5-داده کاوی : بخش اصلی فرایند ، که در آن با استفاده از روش ها و تکنیک های خاص ، استخراج الگو های مفید ، دانش استخراج می شود. 
6-زیابی الگو : مشخص کردن الگوهای صحیح و مورد نظر به وسیله معیارهای اندازه گیری.
7-زنمایی دانش : در این بخش به منظور ارائه دانش استخراج شده به کاربر ، از یک سری ابزارهای بصری سازی استفاده می گردد.

1-3-1-تعریف داده کاوی 
در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده اند . در برخی از این تعاریف داده کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده ها می سازد معرفی گردیده است و در برخی دیگر ، تعاریف دقیقتر که درآنها به کاوش در داده ها توجه می شود. برخی از این تعاریف عبارتند از :
• داده کاوی عبارت است از فرایند استخراج اطلاعات معتبر ، از پیش ناشناخته قابل فهم و قابل اعتماد از پایگاه داده های بزرگ که شامل بهره گیری از بزارهای آنالیز داده ها، برای کشف الگوهای موجود و روابط ناشناخته‌ی میان داده ها در حجمی وسیع می باشد. و استفاده از آن درتصمیم گیری فعالیتهای تجاری مهم. 
• اصطلاح داده کاوی به فرایند نیم خودکار تجزیه و تحلیل پایگاه داده های بزرگ به منظور یافتن الگوهای مفید اطلاق می شود [3]. 
• داده کاوی یعنی جستجو در یک پایگاه داده ها برای یافتن الگوهایی میان داده ها [4].
• داده کاوی یعنی استخراج دانش کلان ، قابل استناد و جدید از پایگاه داده ها ی بزرگ .
• داده کاوی یعنی تجزیه و تحلیل مجموعه داده های قابل مشاهده برای یافتن روابط مطمئن بین داده ها .
همانگونه که در تعاریف گوناگون داده کاوی مشاهده می شود ، تقریبا در تمامی تعاریف به مفاهیمی چون استخراج دانش ، تحلیل و یافتن الگوی بین داده ها اشاره شده است .
1-3-3- قابلیت های داده کاوی
باید توجه داشته باشید که داده کاوی یک ابزار جادویی نیست که بتواند در پایگاه داده شما به دنبال الگوهای جالب بگردد و اگر به الگویی جدیدی برخورد کرد آن را به شما اعلام کند بله صرفا الگوها و روابط بین داده ها را به شما اعلام می کند بدون توجه به ارزش آنها. بنابراین الگوهایی که به این وسیله کشف می شوند باید با جهان واقع تطابق داشته باشند.[5] 
1-3-4-چه نوع داده‌هایی مورد کاوش قرار می گیرند؟ 
در اصل داده کاوی مختص یک رسانه یا داده‌ی خاص نیست و باید از قابلیت اجرا بر روی هر نوع داده ای برخوردار باشد، اگر چه الگوریتم‌ها و تلاشها ممکن است در مواجهه با گونه های مختلف داده، تفاوت داشته باشند. 
• فایلهای ساده (FLAT FILES):
رایج ترین منبع برای الگوریتم های داده‌کاوی هستند، خصوصا در مرحله ی تحقیق، فایل های ساده، فایل های ساده ی متنی یا با ساختار دودویی هستند و با ساختاری شناخته شده برای یک الگوریتم مشخص داده کاوی که روی آن پیاده می شود. داده های درون این نوع فایل ها می توانند تراکنش ها، داده های سریالی، اندازه گیری های‌ عملی و ... باشند.
• پایگاههای داده ای رابطه ای(RDBMS): 
مختصرا، یک پایگاه داده ی رابطه ای متشکل از مجموعه‌ای از جداول است که در بر گیرنده‌ی مقادیری برای صفات موجودیت ها و یا مقادیری از روابط بین موجودیت ها می‌باشد. هر جدول دارای چندین سطر و ستون می‌باشد که ستونها ارائه کننده‌ی صفات خاصه و سطرها ارائه کننده‌ی رکوردهای اطلاعاتی می‌باشند. یک رکورد اطلاعاتی در بر گیرنده‌ی صفات خاصه‌ی یک شئ یا روایط بین اشیا است که با یک کلید غیر تکراری تعریف می‌شود. الگوریتم های داده‌کاوی برای پایگاه‌های داده‌ای رابطه‌ای بسیار فراگیرتر و سریعتر از الگوریتم های داده‌کاوی روی فایل‌های ساده هستند.
• انبارهای داده ای 
وجود اطلاعات صحیح و منسجم یکی از ملزوماتی است که در داده کاوی به آن نیازمندیم. اشتباه و عدم وجود اطلاعات صحیح باعث نتیجه گیری غلط و در نتیجه اخذ تصمیمات ناصحیح در سازمانها می گردد و منتج به نتایج خطرناکی خواهد گردید که نمونه های آن کم نیستند .
اکثر سازمانها دچار یک شکاف اطلاعاتی هستند. در اینگونه سازمان ها معمولا سیستم های اطلاعاتی در طول زمان و با معماری و مدیریت های گوناگون ساخته شده اند ، به طوری که درسازمان، اطلاعاتی یکپارچه و مشخصی مشاهده نمی گردد . علاوه بر این برای فرایند داده کاوی به اطلاعات خلاصه و مهم در زمینه تصمیم گیری های حیاتی نیازمندیم .
هدف از فرایند انبارش داده ها فراهم کردن یک محیط یکپارچه جهت پردازش اطلاعات است . در این فرایند ، اطلاعات تحلیلی و موجز در دوره های مناسب زمانی سازماندهی و ذخیره می شود تا بتوان از آنها در فرایند های تصمیم گیری که از ملزومات آن داده کاوی است ، استفاده شود . به طور کلی تعریف زیر برای انبار داده ها ارائه می گردد : انبار داده ها ، مجموعه ای است موضوعی ، مجتمع ، متغیر در زمان و پایدار از داده ها که به منظور پشتیبانی از فرایند مدیریت تصمیم گیری مورد استفاده قرار می گیرد. 
1-4- وظایف داده کاوی 
وظایف داده کاوی معمولا بشرح زیر است: 
• کلاس بندی 
• پیش بینی 
• خوشه سازی 
• تخمین 
1-1-4-کلاس بندی
هدف کلاس‌بندی داده‌ها، سازماندهی و تخصیص داده‌ها به کلاس‌های مجزا می‌باشد. در این فرآیند بر اساس داده‌های توزیع شده، مدل اولیه‌ای ایجاد می‌گردد. سپس این مدل برای طبقه‌بندی داده‌های جدید مورد استفاده قرار می‌گیرد، به این ترتیب با بکارگیری مدل بدست آمده، تعلق داده‌های جدید به کلاس معین قابل تعیین می‌باشد. کلاس‌بندی در مورد مقادیر گسسته و پیشگویی به‌کار می‌رود. [6] 
در فرآیند کلاس‌بندی، اشیا موجود به کلاس‌های مجزا با مشخصه‌هایی تفکیک‌شده (ظروف جداگانه) طبقه‌بندی و به صورت یک مدل معرفی می‌گردند. سپس با در نظر گرفتن ویژگی‌های هر طبقه، شی‌ جدید به آنها تخصیص یافته، برچسب و نوع آن قابل تعیین می گردد. 
در کلاس‌بندی، مدل ایجاد شده بر پایه‌ی یک‌سری داده‌های آموزشی، (اشیا داده‌هایی که بر چسب کلاس آنها مشخص و شناخته شده است) حاصل می آید. مدل بدست آمده در اشکال گوناگون مانند قوانین کلاس‌بندی (If-Then)، درخت‌های تصمیم، فرمول‌های ریاضی و شبکه‌های عصبی قابل نمایش می‌باشد. 
به عنوان مثال فرض کنید مدیر فروشگاهی در نظر دارد مجموعه‌ی بزرگی از داده‌ها را بر اساس میزان فروش به زیاد، متوسط و کم طبقه‌بندی کند. وی می‌بایست مدلی ایجاد کند که بر اساس خصیصه‌های کالا مانند قیمت، مارک، محل ساخت و نوع کالا، کلاس مربوط به آن نوع کالا را تعیین نماید. طبقه‌بندی نهایی می‌بایست به طور ماکزیمال هر کلاسی را از دیگری تشخیص داده،و تصویر سازماندهی شده‌ای از داده‌ها را به نمایش در آورد. [7] 
از کاربردهای کلاس‌بندی می توان بازاریابی، تشخیص بیماری، تحلیل اثرات معالجه، تشخیص خرابی در صنعت و تعیین اعتبار را نام برد. [6] 
1-4-2- مراحل یک الگوریتم کلاس‌بندی 
الگوی عمومی‌ برای الگوریتم‌های آموزش از طریق مثال با فرایند کلاس‌بندی به سه مرحله تقسیم می‌‌شوند:[2]
• پیش‌پردازش داده‌ها 
• ساخت و ارزیابی قوانین کلاس‌بندی و هرس کردن قوانین اضافی که هدف ما می‌باشد.
• کلاس‌بندی نمونه‌های جدید
1-4-3- انواع روش‌های کلاس‌بندی 
کلاس‌بندی به روش‌های زیر انجام‌پذیر است: 
• طبقه‌بندی بیز
• درخت تصمیم 
• K-Nearest Neibour 
• الگوریتم‌های ژنتیک 
• شبکه‌های عصبی
1-4-3-1- درخت تصمیم
درخت تصمیم عبارت است از یک مجموعه قوانین برای تقسیم کردن یک مجموعه ی ناهمگن بزرگ به مجموعه کوچکتر و گروه های همگن تر نسبت به متغیر هدف (فیلد موردنظر). درخت¬های تصمیم روشی برای نمایش یک سری از قوانین هستند که منتهی به یک رده یا مقدار یا یک طبقه می¬شوند. برای مثال، می-خواهیم متقاضیان وام را به دارندگان ریسک اعتبار خوب و بد تقسیم کنیم. شکل یک درخت تصمیم را که این مسئله را حل می-کد نشان می¬دهد و همه مؤلفه¬های اساسی یک یک درخت تصمیم در آن نشان داده شده است : نود تصمیم، شاخه¬ها و برگ¬ها درخت تصمیم برای موارد زیر به کار برده می شود. [9] 
شکل1-2: نمونه یک درخت تصمیم 
1-احتمال اینکه یک داده معلوم و معین متعلق به کدام دسته، را محاسبه می کند.
2-با اختصاص دادن آنها به دسته ای که احتمالش بیشتر است، رکوردها را دسته بندی می کند. 
درخت تصمیم، براساس الگوریتم، ممکن است دو یا تعداد بیشتری شاخه داشته باشد. برای مثال، CART درختانی فقط با دو شاخه در هر نود ایجاد می¬کند. هر شاخه منجر به نود تصمیم دیگر یا یک نود برگ می¬شود. با پیمایش یک درخت تصمیم از ریشه به پایین به یک نمونه یک طبقه یا مقدار نسبت می-دهیم. هر نود از ویژگی های یک نمونه برای تصمیم¬گیری درباره آن انشعاب استفاده می¬کند.
درخت¬های تصمیمی که برای پیش¬بینی متغیرهای دسته¬ای استفاده می¬شوند، درخت¬های classification نامیده می¬شوند زیرا نمونه¬ها را در دسته¬ها یارده¬ها یا کلاس ها قرار می¬دهند. درخت¬های تصمیمی که برای پیش¬بینی متغیرهای پیوسته استفاده می¬شوند درخت¬های regression نامیده می¬شوند. 
1-4-3-1-1- کشف تقسیمات 
هدف از ساختن درخت این است که دستهای را برای یک رکورد برمبنای فیلد هدف تعیین کنیم. درخت بوسیله ی تقسیمات رکوردها بر اساس فیلد ورودی ایجاد می شود. در هر نود تقسیمات (انشعاب) رکوردها بر اساس فیلد ورودی انجام می شود. 
اولین کار برای این منظور این است که تعیین کنیم که کدام فیلد ورودی تقسیم بهتری را می سازد. بهترین تقسیم در نتیجه ی یک جداسازی خوب رکوردها به گروه هایی که در این جا یک دسته این گروه ها را در بر می گیرد, کشف می شود.
یک معیار در ارزیابی تقسیم ، خلوص است. یک متد با خلوص بالا، به این معنی است که اعضای آن دسته عالی و ممتازاند
-4-3-1-2- دسته بندی با درخت تصمیم
هر کس که به بازی بیست سؤالی آشنا باشد براحتی متوجه می شود که درخت تصمیم چگونه رکوردها را دسته بندی می کند. در بازی بیست سؤالی شرکت کننده اول به یک چیز خاص فکر می کند و شرکت کننده دوم باید آن را تشخیص دهد . شرکت کننده اول هیچ راهنمایی را برای تشخیص آن چیز خاص ارائه نمی دهد و شرکت کننده دوم بوسیله یک سری سؤال های بله، خیر سعی می کند که آن چیز را کشف کند.
درخت تصمیم این طوری یک سری از سؤال ها را جواب می دهد . اگر سوال ها مناسب انتخاب شوند یک مجموعه ی کوچک از سؤال ها کافی است تا رکوردها را به دسته های مورد نظر وارد کنیم بازی بیست سؤالی فرایند استفاده از درخت برای افزودن یک رکورد به دسته مربوطه را روشن می کند. هنگامی که یک رکورد وارد ریشه درخت می شود گره ریشه از یک تست استفاده می کند برای این که تعیین کند که کدام فرزندان با آن برخورد کند همه ی گره های میانی به همین طریق عمل می کنند. 
برگ‌ها برچسب کلاس را مشخص می کنند. یک مسیر منحصر به فرد از ریشه به برگ وجود دارد. این مسیر، قانونی را که برای دسته بندی رکورد استفاده کرده است را بیان می کند.
یک درخت تصمیم یک ساختار سلسله مراتبی می‌باشدکه در آن، گره‌های میانی برای تست یک خصیصه به کار می روند. شاخه‌ها نشانگر خروجی تست بوده، برگ‌ها برچسب کلاس و یا همان طبقه را مشخص می‌نمایند. نکات اساسی برای هر درخت تصمیم به شرح زیر هستند: [10]
• ملاک استفاده شده برای ساخت درخت چه عواملی هستند؟ یعنی کدام متغیر باید برای شکستن انتخاب گردد و این متغیر چگونه باید شکسته شود؟


دانلود با لینک مستقیم


پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعات(همراه با عکس)

سورس کد ارتباط با پایگاه داده sql server با زبان سی شارپ

اختصاصی از فی ژوو سورس کد ارتباط با پایگاه داده sql server با زبان سی شارپ دانلود با لینک مستقیم و پر سرعت .

سورس کد ارتباط با پایگاه داده sql server با زبان سی شارپ


سورس کد ارتباط با پایگاه داده sql server با زبان سی شارپ

فرمت فایل : ویژوال استادیو(قابل ویرایش)

 

 

 

 

در این سورس کد, نحوه ارتباط با پایگاه داده SQL SERVER در زبان سی شارپ فراهم شده است که کدهای این برنامه روی فرم نوشته شده اند فقط کافیست روی فرم در سی شارپ دوبار کلیک کنید تا سورس کد را مشاهده کنید و مقابل هر خط کد توضیحات مربوط به آن خط کد به زبان فارسی برای فهم بیشتر شما فراگیران و دانشجویان نوشته شده است برای اجرای برنامه فقط کافیست یک پایگاه داده در SQL SERVER ایجاد کنید و در قسمت کدها در سی شارپ نام پایگاه داده و نام سرور را در قسمت کدها وارد کنید تا ارتباط سی شارپ با SQL SERVER برقرار شود ,این قطعه کد بخشی از اجرای هر نرم افزار و پرژه میباشد که برای اولین بار در وب سایت پارس منتشر گردیده است و تمرینی مفید و کاربردی برای دانشجویان و علاقه مندان به زبان برنامه نویسی سی شارپ است.

 


دانلود با لینک مستقیم


سورس کد ارتباط با پایگاه داده sql server با زبان سی شارپ

دانلود مقاله آموزش SQL

اختصاصی از فی ژوو دانلود مقاله آموزش SQL دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله آموزش SQL


دانلود مقاله آموزش SQL

مقاله آموزش SQL

مقاله ای مفید با قیمت مناسب

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب* 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:9

چکیده :

آموزشSQL

کاربرد روز افزون بانک اطلاعاتی SQL مرا بر آن داشت تا مطالبی هر چند کوتاه جهت خوانندگان محترم سایت تهیه نماییم. قبلا از هر چیز لازم به ذکر است که مطالب ذیل در حد آشنایی بوده و دوستا برای دستیابی به تکنیکهای بیشتر می‌بایست از کتابهای مرجع و Book online خود SQL Server استفاده نمایند. در مطالب زیر که سلسله وار مباحث SQL Server را مرور خواهیم کرد , سعی شده تا ابتدا مطالب مقدماتی جهت آشنایی آورده شود و سپس اگر عمری باقی بود به مطالب پیشرفته آن بپردازیم. همچنین برای یادآوری خدمت دوستان ابتدا مرور سریعی بر چند دستور SQL که کاربرد بیشتری دارند خواهیم پرداخت و سپس به SQL Server و مطالب آن خواهیم پرداخت . مطالب زیر اکثرا از کتاب Microsoft SQL Server 7.0 Database Implementation Training انتخاب گردیده است . این کتاب به همراه CD‌آموزش آن به عنوان یک مرجع برای امتحانات مایکروسافت استفاده می‌شود.

جداول بکار رفته نیز همگی در SQL Server 7.0 در Database Northwind موجود هستند.

دستور Select

این دستور که دستوری مستقل نیست و حتما باید با اجزایی بکار رود جهت ساخت پرس و جو بر روی بانک اطلاعاتی بکار می‌رود و رکوردهایی که با شرایط این دستور همخوان باشد به عنوان نتیجه پرس و جو برمی‌گرداند . چهار کلمه کلیدی وجود دارند که بخشهای ارزشمند این دستور را تشکیل می‌دهند :

و...

NikoFile


دانلود با لینک مستقیم


دانلود مقاله آموزش SQL