فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد مشتق

اختصاصی از فی ژوو تحقیق در مورد مشتق دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مشتق


تحقیق در مورد مشتق

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 15

 

فهرست مطالب:

 

مقدمه

  تاریخچه

  مشتقات مراتب بالاتر

  تابع مشتق‌پذیر در یک نقطه

  تابع مشتق‌پذیر

  شرایط مشتق‌پذیری

مشتق گیری و مشتق پذیری :

بررسی مشتق از نظر هندسی ارتباط مشتق با علم فیزیک نقاط بحرانی تجزیه و تحلیل نمودارها تابعیت ضمنی

یک سوال راهگشا برای درک مشتقگیری ضمنی کاربردها

کاربرد برای پیدا کردن خط مماس

موارد استعمال مشتق

پیدا کردن شتاب

محاسبه انرژی جنبشی

پیدا کردن ماکزیمم و مینیمم نسبی توابع

تعیین نقاط بحرانی توابع

 

 

  تاریخچه

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

  مشتقات مراتب بالاتر

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

  نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

  • f'' و f''' و f''''
  • f(2) و f(3) و f(4)

 

  تابع مشتق‌پذیر در یک نقطه

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

  تابع مشتق‌پذیر

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

  شرایط مشتق‌پذیری

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود.
ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد.
البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.

  مشتق گیری و مشتق پذیری :


در گذشته های نه چندان دور، مشتق یک تابع را به صورت زیر نشان می دادند:


که در این فرمولنشان دهنده میزان تغییرات یک کمیت است. ولی در حال حاضر برای محاسبه مشتق توابع،بیشتر از فرمول زیر استفاده میکنند:


معمولا از نمادهای زیر برای نشان دادن مشتق تابع f نسبت به متغیر x، استفاده میکنند:

 


دانلود با لینک مستقیم


تحقیق در مورد مشتق
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.