فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

کاربرد داده کاوی در شبکه های عصبی

اختصاصی از فی ژوو کاربرد داده کاوی در شبکه های عصبی دانلود با لینک مستقیم و پر سرعت .

این مقاله در بسته شماره 1 وجود دارد برای مشاهده بسته1 اینجا کلیک کنید.

کاربرد داده کاوی در شبکه های عصبی



نویسند‌گان:
[ مسعود مهدی خو ] - کارشناس نرم افزار، دانشگاه پیام نور همدان
[ محمد طاهری ] - کارشناس نرم افزار، دانشگاه پیام نور همدان
[ فرشته لطفی ] - کارشناس نرم افزار، دانشگاه پیام نور همدان

خلاصه مقاله:

چندین دهه است که شرکت ها اطلاعات را جمع آوری می نمایند تا با ایجاد یک پایگاه داده انبوه اطلاعات را ذخیره کنند، با این حال که اطلاعات در دسرس آنها قرار دارد فقط تعداد کمی از شرکت ها قادر شده اند به ارزش واقعی ذخیره شده در آنها پی ببرند سوال این شرکت ها این است که چگونه می توان به ارزش واقعی این اطلاعات دست یافت؟ پاسخ آن داده کاوی است، که امروزه در بسیاری از صنعت ها از جمله پزشکی ،آموزش، ورزش و بسیاری از صنایع دیگر مورد استفاده قرار می گیرد. تکنولوژی های بسیاری جهت داده کاوی وجود دارد از جمله شبکه های عصبی مصنوعی ، رگرسیون درخت تصمیم و غیره. این مقاله به معرفی داده کاوی و برخی از روشهای داده کاوی و همچنین محیط هایی که از داده کاوی بهره می برند به همراه نرم افزار های آن پرداخته است .

 

کلمات کلیدی:

داده کاوی، شبکه عصبی، درخت تصمیم گیری، الگوریتم ژنتیک.


دانلود با لینک مستقیم


کاربرد داده کاوی در شبکه های عصبی

داده کاوی

اختصاصی از فی ژوو داده کاوی دانلود با لینک مستقیم و پر سرعت .

داده کاوی


داده کاوی

فرمت فایل : word(قابل ویرایش)تعداد صفحات19

 

مقدمه:

جهان پیرامون ما سرشار از داده ها و اطلاعات گوناگون می‌باشد. برای پیش بینی گرایشات و جریان های آتی و به منظور اتخاذ تصمیم گیری بهتر در زمینه علوم، تکنولوژی ، صنعت، بازار وغیره.

انسان همواره با اشتیاقی حریصانه به دنبال کشف دانش از این موداب داده ها بوده است. قدیمی ترین دست نوشت ها کشف شده بر روی لوح های گلی مربوط به چهار قرن قبل از میلاد مسیح می‌باشد. با ساخت کاغذ داده های فراوانی بر روی هزاران جلد کتاب وسایر مستندات دیگر وغیره شد.

توامروزه نیز با افزایش روز افزون کاربرد کامپیوتر ها حجم عظیمی از داده ها دیسک های سخت را به صورت اطلاعات دیجیتالی پر کرده اند. با دراختیار داشتن حجم عظیم داده ها مساله اصلی چگونگی یا فتن جمع‌آوری و به کارگیری روش هایی است که بتوان آنها را در کشف دانش از داده ها  و به کارگیری دانش کشف شده در موارد مختلف به کار گرفت.

اگر چه در دهه های اخیر زمینه جدید با عنوان داده کاوی به رواج یافته است ولی عملکردها و وظایف این علم مثل دسته بندی و جداسازی، از سالها پیش وجودداشته و به کار گرفته می شده اند. با توجه به اینکه هدف داده کاوی کشف الگوهای ناشناخته از داده ها می‌باشد روش های این علم از آموزش ماشین،هوش مصنوعی، آمار وغیره مشتق شده اند. با گسترش این علم روش های داده کاوی در زمینه هایی خارج از علوم کامپیوتر وهوش مصنوعی همچون دنیای تجارت وخطوط مونتا کارخانه ها نیز به کار گرفته شد.

بدین ترتیب قابلیت های داده کاوی در زمینه هایی چون افزایش رقابت در بازار تجاری تشخیص کلاه برداری، تشخیص بیماریها با توجه به مدارک پزشکی وغیره نیز مورد آزمایش قرار گرفت و به اثبات رسید.

معمولا در یک سیستم داده کاوی قابلیت هایی به منظور جمع آوری ذخیره سازی دسترسی پردازش و نهایتا توصیف ونمایش مجموعه های داده ای در نظر گرفته شود. جنبه های مختلف داده کاوی را میتوان به صورت مجزا مورد بررسی قراردارد. اگر چه جمع آوری وذخیره سازی اطلاعات در داده کاوی فوقالعاده با اهمیت می باشند ولی گاها این دو مورد را جز وظایف داده کاوی به شمار نمی آورد. در این میان افزونگی وگاها نامربوط بودن اطلاعات موجود در مجموعه های داده ها کاوی فوق العاده با اهمیت می باشند ولی گاها این دو مورد جزء وظایف داده کاوی به شمار نمی آورد. در این میان افزودگی وگاها نامربوط بودن اطلاعات موجود در مجموعه های داده ها وهمچنین قالب های ناسازگار مجموعه های داده ای جمع آوری شده را میتوان از جمله عواملی برشمرد که روند داده کاوی را با مشکل مواجه می کنند وحتی ممکن است باعث به وجود‌آمدن مسیرهای جستجوی گمراه کننده یا پایین آوردن کیفیت نتایج داده کاوی شوند. این مسائل وقتی بروز می دهند که افرادی که وظایف جمع آوری وپردازش کاویدن اطلاعات را بر عهده دارنددر یک گروه وکنار هم کارنکننده که در بسیاری از موارد راههای جمع آوری شده از ابتدا به منظور داده کاوی فراهم نشده اند.


دانلود با لینک مستقیم


داده کاوی

پاورپوینت داده‌کاوی جریان‌داده‌ها با درخت‌های تصمیم‌گیری

اختصاصی از فی ژوو پاورپوینت داده‌کاوی جریان‌داده‌ها با درخت‌های تصمیم‌گیری دانلود با لینک مستقیم و پر سرعت .

پاورپوینت داده‌کاوی جریان‌داده‌ها با درخت‌های تصمیم‌گیری


پاورپوینت داده‌کاوی جریان‌داده‌ها با درخت‌های تصمیم‌گیری

18 اسلاید

■ فرایندی دو مرحله ای است :
■ساخت مدل :
■تحلیل یک مجموعه آموزشی که مجموعه‌ای از تاپل‌های پایگاه است و مشخص کردن برچسب کلاس‌های مربوط به این تاپل‌ها .
■ یک تاپل X با یک بردار صفت X=(x1,x2,…,xn) نمایش داده می‌شود . فرض می شود که هر تاپل به یک کلاس از پیش تعریف شده متعلق است .
■هرکلاس با یک صفت که به آن صفت برچسب کلاس می‌گوییم مشخص می‌شود .
■ مجموعه آموزشی به صورت تصادفی از پایگاه انتخاب می شود .
■به این مرحله ، مرحله یادگیری نیز می گویند .
■استفاده از مدل :
■از طریق یک تابع y=f(X) برچسب کلاس هر تاپل X از پایگاه را پیش بینی می شود .
■این تابع به صورت قواعد کلاسه‌بندی ، درخت‌های تصمیم گیری یا فرمول‌های ریاضی است .
■یکی از روش های کارآمد و با کاربرد گسترده کلاسه بندی است .
■مدل حاصل از این روش به صورت درختهای تصمیم گیری است :
■هر گره در این درخت نشان دهنده یک آزمون بر روی یک صفت است .
■هر شاخه خارج شونده از یک گره نشان دهنده خروجی های ممکن آزمون است .
■هر برگ نشان دهنده یک برچسب کلاس است .
■نحوه استفاده از درخت تصمیم گیری :
■اگر تاپلی چون X که برچسب کلاس آن نامشخص است داشته باشیم صفات این تاپل در درخت مورد آزمون قرار می گیرند و یک مسیر از ریشه به سمت یک برگ که برچسب یک کلاس را دارد ایجاد می شود .
■الگوریتم پایه
■درخت به صورت بالا-پایین بازگشتی ساخته می شود .
■در آغاز تمام مجموعه آموزشی در ریشه قرار دارند .
■فرض می کنیم صفات مقادیر گسسته دارند .
■صفات به صورت بازگشتی بر حسب صفات انتخاب شده بخش بندی می شوند .
■صفات آزمون بر اساس یک روال هیوریستیک مانند بهره اطلاعاتی ، شاخص جینی یا نسبت بهره انتخاب می شوند .
■شرایط توقف الگوریتم
■تمام نمونه های مربوط به یک نود متعلق به یک کلاس باشند .
■صفتی برای بخش بندی بیشتر باقی نمانده باشد .
■نمونه ای باقی نمانده باشد .

دانلود با لینک مستقیم


پاورپوینت داده‌کاوی جریان‌داده‌ها با درخت‌های تصمیم‌گیری

پروژه ارزیابی و بررسی کاربرد داده کاوی در صنعت

اختصاصی از فی ژوو پروژه ارزیابی و بررسی کاربرد داده کاوی در صنعت دانلود با لینک مستقیم و پر سرعت .

پروژه ارزیابی و بررسی کاربرد داده کاوی در صنعت


تحقیق درباره ارزیابی و بررسی کاربرد داده کاوی در صنعت

فرمت فایل : word (قابل ویرایش) / تعداد صفحات : 56  صفحه
چکیده :

با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به داده‌ها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویس‌های وب می پردازد. در واقع وب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند. طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.

 


دانلود با لینک مستقیم


پروژه ارزیابی و بررسی کاربرد داده کاوی در صنعت