لینک پرداخت و دانلود *پایین مطلب*فرمت فایل:Word (قابل ویرایش و آماده پرینت)تعداد صفحه:81
فهرست:
چکیده
فصل اول:
مقدمه
هدف، پیشینه تحقیق و روش
فصل دوم
تعاریف و قضایای مقدماتی................................................................................... 5
فصل سوم:
خواص اساسی از زیر مدول های اول
فصل چهارم
خواص M رادیکالها و قضایای مربوطه به –R مدول های متناهیا تولید شده
فصل پنجم:
زیر مدول های تولید شده توسط پوش یک زیر مدول
فصل ششم:
رادیکال زیر مدول ها
فصل هفتم
چکیده انگلیسی
منابع فارسی
واژه نامه
منابع انگلیسی
مدول های بسته
چکیده:
در این پایان نامه همه حلقه ها یکدار و جابجائی و همه مدول ها یکانی هستند این پایان نامه شامل یک مقدمه و هفت فصل است. فصل اول شامل هدف، پیشینه تحقیق و روش کار می باشد. فصل دوم شامل تعاریف و قضایای مقدماتی است. فصل سوم شامل خواص اساسی زیر مدول های اول است. فصل چهارم شامل خواص –M رادیکالها است هدف عمده فصل پنجم برهان قضیه زیر می باشد.
قضیه 1: فرض کنیم R یک حلقه باشد. آن گاه R در فرمول رادیکال صدق می کند در صورتی که یکی از شرایط زیر برقرار باشد.
الف) برای هر -R مدول آزاد F,F در فرمول رادیکال صدق کند.
ب) برای هر مدول A، .
ج) R تصویر همومرفیسم S است که S در فرمول رادیکال صدق می کند.
د) برای هر R- مدول A faithful، A در فرمول رادیکال صدق کند.
در فصل ششم R یک دامنه ایده آل اصلی است و A مدول آزاد Rn در نظر گرفته شده است. و هدف عمده فصل ششم و هفتم برهان قضیه زیر می باشد.
قضیه 2: فرض کنیم R یک دامنه ایده آل اصلی و P, A=Rn زیر مدولی از A باشد. آن گاه عبارات زیر هم ارزند.
الف: P جمعوند مستقیم A است.
ب: P بسته است.
ج: اگر آن گاه P اول است و dim P<n .
مقدمه:
در سال 1991 R.L.McCasland و M.E.Moore مقاله ای تحت عنوان رادیکال های زیر مدول ها نوشتند این پایان نامه شرحی است بر مقاله فوق.
فصل اول این پایان نامه شامل هدف و پیشینه تحقیق می باشد. فصل دوم شامل تعاریف و قضایای مقدماتی است. فصل سوم خواص زیر مدول های اول می باشد. فصل چهارم شامل خواص -M رادیکال ها می باشد.
فصل پنجم با تعریف مفاهیم پوش یک زیر مدول یا E(B) و M-radB شروع شده است. و ارتباط بین زیر مدول های تولید شده توسط آنها با رادیکال زیر مدول ها بررسی شده و همچنین شرایط هم ارزی که یک حلقه می تواند در فرمول رادیکال صدق کند بررسی شده است.
در فصل ششم حلقه R یک حلقه PID و مدول A نیز مدول آزاد Rn در نظر گرفته شده است و نشان می دهیم اگر B زیر مدول A باشد آن گاه اگر و تنها اگر dim B=dim A و در فصل هفتم با تعریف مدول های بسته نشان داده می شود که اگر R دامنه ایده آل اصلی و P , A=Rn زیر مدول A باشد آن گاه شرایط زیر هم ارزند.
1) P جمعوند مستقیم A است. 2) P بسته است. 3) اگر باشد آن گاه P اول است و dim P<n .
پایان نامه د رمورد رادیکال زیر مدول ها