فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی

اختصاصی از فی ژوو بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی دانلود با لینک مستقیم و پر سرعت .

بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی


بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی در این مقاله ی کاربردی با فرمت Pdf بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی مورد تحقیق و پژوهش قرار گرفته است
روش سل - ژل احتراقی یکی از روش های متداول در تولید نانوپودرها می باشد. در این روش که روشی جدید با ترکیبی بی نظیر از روش سل - ژل و فرایند احتراقی است، علاوه بر بهره مند شدن از مزایای روش سل - ژل و سنتز احتراقی با روشی ساده تر و ارزان تر، ذرات نانو پودر با اندازه ذرات ریزتر و توزیع یکنواخت تر و خلوص بالاتر به دست می آید.
در این تحقیق با استفاده از روش سل - ژل، احتراقی نانو پودر اکسید روی تشکیل شده است. نتایج نشان دادند که استفاده از سوخت اسید سیتریک، نسبت سوخت به مواد اولیه 0/5، pH خنثی و دمای کلسیناسیون 500 درجه سانتیگراد برای دست یابی به نانو پودرهای اکسید روی با ابعاد تقریبی 30nm امکان پذیر خواهد بود.

دانلود با لینک مستقیم


بررسی سنتز نانو پودر اکسید روی با استفاده از روش سل - ژل احترقی

دانلود مقاله کارخانه گاز دی اکسید کربن

اختصاصی از فی ژوو دانلود مقاله کارخانه گاز دی اکسید کربن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کارخانه گاز دی اکسید کربن


دانلود مقاله کارخانه گاز دی اکسید کربن

ل

ینک و پرداخت دانلود * پایین مطلب *

 

فرمت فایل : word ( قابل ویرایش )

 

تعداد صفحه : 11

 

 

 

فهرست:

مراحل تهیه گاز دی اکسید کربن

 سوزاندن سوخت مایع

خنک کن فلو گاز

 برج جذب دی اکسید کربن

کمپرسور دی اکسید کربن

طرح جداکننده روغن و آب

مقدمه :

در این بخش به چگونگی تولید گاز دی اکسید کربن می پردازیم. کاربرد اصلی این گاز در صنایع نوشابه سازی و تزریق آن در محلول نوشابه می باشد. گاز نوشابه گازدار، علاوه بر آنکه از لحاظ طعم و مزه و ظاهر نیز در جلب نظر مصرف کنندگان اثر بسزائی دارد. به دلیل محیط اسیدی، به عنوان یک نگهدارنده نیز تلقی می شود. به هر صورت، امروز نوشابه های گاز دار جای خود را در میان مصرف کنندگان باز کرده است و ضرورت افزایش گاز دی اکسید کربن به نوشابه ها امری اجتناب ناپذیر است.


دانلود با لینک مستقیم


دانلود مقاله کارخانه گاز دی اکسید کربن

پایان نامه کارشناسی ارشد شیمی مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی

اختصاصی از فی ژوو پایان نامه کارشناسی ارشد شیمی مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد شیمی مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی


پایان نامه کارشناسی ارشد شیمی مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی

این محصول در قالب  پی دی اف

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته شیمی گرایش طراحی فرآیند طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.

 


چکیده

در سالهای اخیر، استفاده از تکنولوژی سیال فوق بحرانی برای حل مشکلات موجود در فرایندهای صنایع داروئی افزایش یافته است. حلالیت یک جامد در یک سیال فوق بحرانی، یکی از خواص مهمی است که برای هر کاربردی از سیالات فوق بحرانی باید مدلسازی و محاسبه گردد. در این تحقیق تلاش شده است که یک مدل ریاضی برای محاسبه حلالیت ایبوپروفن در دی اکسید کربن ارائه شود.

در این تحقیق از روش دینامیک و تجهیزات موجود در پژوهشگاه صنعت نفت برای محاسبه مقادیر حلالیت ایبوپروفن در دی اکسید کربن در دو دمای 30 و 40 درجه سانتیگراد و محدوده فشار 80 تا 130 بار استفاده شده است. همچنین از مقادیر مشابه ارائه شده توسط سایر محققان برای مقایسه بهره جسته ایم.

برای چک نمودن دقت و سازگاری داده های تجربی به دست آمده، از معادله مندز – سانتیاگو – تجا کمک گرفته شده است. مقادیر حلالیت با 7 معادله حالت و دو قانون اختلاط تطابق داده شده اند. معادلات حالت عبارتند از: واندروالس، ردلیش – کوانگ، سو – ردلیس – کوانگ، پنگ – رابینسون، استریجک – ورا، پتل – تجا – والدرما و پازوکی و دیگران. قوانین اختلاط نیز، قانون اختلاط واندروالس یک و دو پارامتری می باشند.

مدلسازی و تطابق داده ها با نرم افزار مطلب انجام شده است. همچنین از سه گروه از خواص فیزیکی تخمین زده شده توسط سه متد مختلف (جوبک، لیدرسن و امبروس) استفاده شده است. مقادیر این خواص فیزیکی توسط نرم افزار Predict Plus 2000 به دست آمده اند. نتایج بدست آمده بر پایه معادلات حالت، قوانین اختلاط و متد تخمین خواص فیزیکی، مورد بحث و مقایسه قرار گرفته اند.

مقادیر پارامترهای انطباق و مقادیر میانگین مطلق انحراف نسبی (AARD%) برای هر سیستم به دست آورده شده است. نتایج نشان می دهند که در دماهای 35 و 45 درجه سانتیگراد، معادله حالت پازوکی و در دمای 40 درجه سانتیگراد معادلات حالت پتل – تجا – والدرما و واندروالس، هنگام استفاده از قانون اختلاط دو پارامتری واندروالس (vdw2)، از سایر معادلات حالت دقیق ترند. از آنالیز کامل نتایج می توان نتیجه گرفت که استفاده از vdw2 در همه معادلات حالت نتایج بهتری را نسبت به استفاده از vdw1 حاصل می کند. این حقیقت را می توان به این شکل توضیح داد که کاربرد دو پارامتر انطباق قابل تنظیم، قدرت انعطاف پذیری معادله حالت برای فیت نمودن داده های آزمایشگاهی حلالیت را افزایش می دهد. همچنین می توان در اغلب موارد، استفاده از متد لیدرسن برای تخمین مقادیر حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی را نسبت به سایر متدها (جوبک و امبروس) توصیه نمود.

مقدمه

در دهه های اخیر استفاده از سیال فوق بحرانی و تکنولوژی آن در بسیاری از زمینه ها خصوصا در صنایع دارویی، مورد توجه قرار گرفته است. دلیل این امر، در چند موضوع نهفته است:

1- قدرت بالای سیالات فوق بحرانی به عنوان حلال، که استخراج از ترکیبات چگال را بسیار بهبود می بخشد.

2- امکان افزایش میزان حلالیت با تغییر در محدوده وسیعی از دما و فشار.

3- خواص فیزیکی گاز گونه سیالات فوق بحرانی با توجه به اینکه که رفتار دانسیته در این سیالات مشابه مایعات است.

4- امکان استفاده از حلال های غیررسمی که پساب سمی تولید نمی کنندو

5- قیمت پایین حلال در فرایندهایی که از سیالات فوق بحرانی به عنوان حلال استفاده می کنند.

6- امکان انجام عملیات در دماهای نسبتا پایین برای موادی که در دماهای بالا ناپایدارند.

تمامی موارد ذکر شده در بالا، شرایط ایده آل و مناسبی را برای استفاده از این مواد در فرایندهایی نظیر استخراج، خالص سازی و کریستالیزاسیون مواد داروئی حساس، فراهم می آورند.

میزان حلالیت ماده حل شونده در سیال فوق بحرانی، مهمترین خاصیت ترموفیزیکی است که به عنوان اولین پله در مدلسازی هر نوع عملیات در فاز سوپر کریتیکال، باید تعیین شود.

مهمترین فاکتور موثر و نکته کلیدی در کیفیت فرایندهای استخراج سوپر کریتیکال از لحاظ فنی و اقتصادی، دقت داده های تعادلی برای حلالیت است. با این حال داده های تجربی برای حلالیت بیشتر مواد دارویی در سیالات فوق بحرانی (بخصوص دی اکسید کربن) به ندرت موجود است. دلیل این کمبود را می توان در دو موضوع مهم خلاصه کرد: پیچیدگی و گران بودن تجهیزات و تکنیک های موجود که زمان زیاد و دقت بسیار بالایی را برای به دست آوردن نتایج درست می طلبد. این موضوع مشکل دیگری را در بحث بررسی این فرایندها به وجود می آورد و آن عدم اطمینان به دقت نتایج و داده های آزمایشگاهی گزارش شده در مقالات است که باعث مشکل شدن بررسی این نتایج می شود.

پیش بینی فرایند حلالیت در سیالات فوق بحرانی بسیار مشکل است زیرا دقت مدل های موجود برای شبیه سازی و تخمین تعادلات حلالیت در تمامی شرایط عملیاتی کافی نبوده و همچنین دسترسی به اطلاعات مربوط به خواص فیزیکی بیشتر مواد دارویی محدود می باشد و در صورت موجود بودن این اطلاعات، عدم اطمینان در متد بکار رفته در تخمین این مقادیر، مشکل را دوچندان می کند.

برای تخمین رفتار حلالیت در سیال فوق بحرانی و تخمین خواص ترمودینامیکی با استفاده از داده های آزمایشگاهی، می توان از معادلات حالت به عنوان یک روشی که اساس محکمی از لحاظ تئوری دارند، استفاده نمود. در این صورت مجبور به استفاده از قوانین اختلاط مناسب برای مواد خالص و قوانین ترکیب برای مخلوط سیال فوق بحرانی و ماده جامد مورد نظر خواهیم بود. در قوانین ترکیب برای پیش بینی انحراف های به وجود آمده از حالت ایده آل، خصوصا در موادی با ساختار پیچیده و مواد قطبی، از پارامترهای انطباق استفاده می شود.

در این پروژه، فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی با استفاده از داده های آزمایشگاهی توسط تعدادی از معادلات حالت درجه سه معمول و قوانین اختلاط واندروالس یک و دو پارامتری مورد بررسی قرار گرفته و با یک مدل ریاضی که توسط نرم افزار مطلب نوشته شده، مقدار بهینه پارامترهای انطباق برای قوانین اختلاط واندروالس در شرایط عملیاتی موجود به دست آورده است. در انتها مقایسه ای نیز میان نتایج به دست آمده در این پروژه و اطلاعات گزارش شده توسط سایر محققان برای ایبوپروفن، انجام شده است.


دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد شیمی مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی

لایه های نازک اکسید قلع

اختصاصی از فی ژوو لایه های نازک اکسید قلع دانلود با لینک مستقیم و پر سرعت .

لایه های نازک اکسید قلع

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه های رشته فیزیک، شیمی، نانوفیزیک،نانوشیمی، مهندسی مواد و ...

حاصل از ترجمه مقالات ISI با 29 رفرنس معتبر - 36 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

-------------------------------------------------------------------------------------------------------------------

لینک عضویت در کانال تلگرامی دنیای فایل:

جهت اطلاع از آخرین و تمام فایلهای تحقیقاتی موجود، شما می توانید با کلیک بر روی لینک زیر و سپس کلیک بر روی join در پایین صفحه در کانال عضو شوید

https://telegram.me/joinchat/CYcguj_Bx3i5GIwnbs2zTw 

 

payannameht@gmail.com

فایلهای مرتبط:

اکسیدهای نیمرسانای شفاف

معرفی روشهای لایه نشانی، خواص و کاربردهای لایه های نازک

خواص لایه های نازک اکسید نیکل

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روش های سنتز نانوذرات 

 

مقدمه

فیزیک لایه ­های نازک، شاخه­ای از فیزیک حالت جامد است که در سال­های متمادی گسترش بسیاری یافته است، به طوری­که خواص سیستم های لایه نازک، که ضخامت آن­ها بسیار کوچک است و تقریباً آن­ها را  می­توان دو بعدی فرض کرد، به کمک این شاخه از فیزیک مورد بررسی قرار داد. خواص این سیستم­ها بسیار متفاوت از حالت حجمی آن­هاست. چرا که در یک نمونه حجیم هر یک از ذرات همواره تحت تأثیر نیروهایی هستند که از تمام جهات به آن­ها وارد می­شود، در حالی­که در لایه­های نازک چنین نیست و همین امر باعث می­شود حالت­های انرژی در این مواد متفاوت از حالت حجمی باشد. در طی 60 سال گذشته، لایه­های نازک اهمیت روزافزونی پیدا کرده­اند و ویژگی­های جالب آن­ها باعث شده است تا این سیستم­ها در زمینه­های اپتیک، اپتوالکترونیک، مغناطیس، میکروالکترونیک، ابررسانایی، نیمرساناها و.... کاربرد فراوانی داشته­ باشند[1].

مهم­ترین هدف محققان در تهیه انواع لایه­های نازک به­دست آوردن لایه­هایی با بهترین کیفیت، یکنواختی، رسانایی بالا، شفافیت اپتیکی مناسب و پایدارترین حالت شیمیایی و مکانیکی است. به  منظور رسیدن به این اهداف، عوامل موثر در فرایند تهیه لایه با بهینه سازی مناسب از اهمیت ویژه­ای برخوردارند. در تعیین خواص فیزیکی و شیمایی لایه­های نازک روش­های رشد لایه نقش اصلی را ایفا می­کنند. با روش­های لایه­نشانی مختلف برای یک ترکیب، می­توان خصوصیات الکتریکی، اپتیکی و ساختاری لایه­های تهیه شده را بهینه ساخت. بنابراین روش­های ساخت لایه­های نازک، شناخت عوامل موثر در حین لایه­نشانی و عملیات پس از آن بسیار با اهمیت می­باشند. روش­های تهیه لایه­های نازک به­طور کلی به دو دسته روش­های فیزیکی و شیمیایی تقسیم می­شوند [2]. از بین روش­های فیزیکی و شیمیایی، در روش شیمیایی لایه­های تهیه شده نظم بلوری بیشتری داشته و چسبندگی لایه­ها خیلی بهتر از روش­های فیزیکی می­باشند.

خواص الکتریکی و اپتیکی لایه­های نازک به نوع ناخالصی اضافه شده بستگی دارد. در این فصل با استفاده از مقالات و مراجع مختلف تأثیر ناخالصی­های مختلف، بر روی خواص فیزیکی لایه­های نازک اکسید قلع مطالعه خواهد شد.

 

مطالعه خواص فیزیکی لایه ­های نازک اکسید قلع، تهیه شده به روش­های لایه ­نشانی مختلف

1-2-1- اسپری پایرولیزیز

 

در سال 2013 میلادی توسط پروین بانو[1] و همکارانش لایه­های نازک SnO2 به روش اسپری پایرولزیز تهیه شد [3]. محلول از مقدار معینی  M)01/0( کلرید قلع 4 آبه به همراه آب مقطر دو بار یونیزه شده تهیه شد. برای جایگذاری لایه­ها از بسترهای شیشه­ای استفاده شد. شرایط جایگذاری لایه­ها در جدول (1-1) خلاصه شده است. شکل (1-1) تصویری از دستگاه اسپری پایرولیزیز را نشان می­دهد....

طرح­های پراش پرتو ایکس (XRD) لایه­ های جایگذاری شده را در دماهای مختلف ( 0C500  ،400،300 ) در شکل (1-2) نشان داده شده است. ثابت­های شبکه و اندازه بلورک­ها برای لایه نازک SnO2 در جدول (1-2) خلاصه شده است.....

 

2-2-1-روش کندوپاش واکنشی[1]

 

در سال 2009 جوی[2] و همکارانش لایه­های نازک اکسید قلع را به روش کندوپاش در دمای 0C400 و با توان­W 200 تهیه کردند [6]. این گروه خواص ساختاری، اپتیکی را گزارش کردند که جزییات کار این گروه در زیر آمده است.

لایه­نشانی با مخلوطی از گازهای Ar و O به نسبت (1:4) انجام شد. لایه­های نازک اکسید قلع تهیه شده به دو مجموعه تقسیم شدند. یک مجوعه شامل لایه­ای بود که  در دمای 0C 400 برای یک ساعت در هوا بازپخت شد و مجموعه دیگر شامل لایه­ای بود که بدون اثر بازپخت مورد بررسی قرار گرفت. شکل (1-6-(a)) و (b) طرح­های XRD  نمونه­ی تهیه شده قبل و بعد از بازپخت با توان W 200 را نشان می­دهد و در شکل (1-7) طرح XRD پودر  SnO2 خالص نشان داده شده است. مشاهده می­شود که در هر دو نمونه در جهت­های (110)، (101)، (211) جهت­گیری کرده­اند. در نمونه بازپخت شده جهت ارجح (110) شدت بیشتری دارد...

 

اندازه ذره با استفاده از فرمول شرر تعیین شد. قبل از بازپخت اندازه ذره nm 9/16 و بعد از بازپخت nm 9/18 محاسبه شد که افزایش اندازه ذره را بعد از بازپخت نشان می­دهد. شکل (1-8) تصاویر AFM لایه­ نازک SnO2 را قبل و بعد از بازپخت را نشان می­دهد. مشاهده می­شود که ذرات بعد از بازپخت بزرگتر شده­اند. در فرایند بازپخت، اتم­های لایه با بدست آوردن میزان کافی انرژی و با تغییر دادن موقیت خود، منجر به بهبود نظم بلوری می­شوند[7]....

 

3-2-1-روش تبخیر حرارتی[1]

لایه­های نازک اکسید قلع به روش تبخیر حرارتی نیز تهیه شده­اند. به عنوان مثال ایخمایس[2] در سال 2012 لایه­های نازک SnO2 را با این روش بر روی بسترهای شیشه­ای تهیه کرد و خواص ساختاری و اپتیکی این لایه­ها را مورد مطالعه قرار داد [8].

لایه­نشانی در سیستم با خلأ بالا  (10-5 mbar)انجام شد. آهنگ تبخیر و فاصله منبع تا بستر به ترتیب Å/s 10 و cm30 بود. شکل (1-10) طرح  XRD لایه­های نازک تهیه شده با ضخامت­های  nm200 و nm 600 را نشان می­دهد. همانطور که مشاهده می­شود لایه­های نازک SnO2  دارای ساختار آمورف می­باشند و در جهت­های (101) و (110) جهت­گیری کرده­ اند.

 .

.

.


مروری بر خواص فیزیکی لایه­های نازک اکسید قلع آلاییده شده با ناخالصی­های مختلف

1-3-1- مطالعه خواص فیزیکی لایه­های نازک اکسیدقلع آلاییده به فلوئور

در سال 2009 میلادی در تحقیق جدیدی، لایه­های نازک نانوساختار SnO2 با افزودن ناخالصی فلوئور (F) توسط مهلکر[1] و همکارانش، به روش اسپری پایرولیزیز[2] تهیه شد[12]. این گروه لایه­های نازک رسانای شفاف (0-60 wt%) SnO2:F را با استفاده از یک محلول آبی شامل کلرید قلع (SnCl4.5H2O) و آمونیوم فلوئورید (NH4F) بر روی بسترهای شیشه­ای که در دمای 0C475 قرار داشتند به روش اسپری پایرولیزیز تهیه کردند و تأثیر ناخالصی فلوئور را روی خواص فیزیکی لایه­های نازک SnO2 مورد مطالعه قرار دادند....

 

خواص ساختاری لایه­ های نازک SnO2:F

الگوهای پراش پرتو-X لایه­های نازک SnO2 و (0-60 wt%)   SnO2:F در شکل (1-15) نشان داده شده است. همه پیک­ها متعلق به فاز بس بلوری با پارامترهای شبکه a و c از Å 73/4 تا 74/4 و Å 17/3 تا 20/3 به ترتیب برای a و c است. صفحه (200) دارای بیشترین شدت است. این در حالی است که پیک­های دیگر مانند (100)، (110)، (220)، (310)، (301)، (400) با شدت کمتری مشاهده می­شوند. شدت صفحه (200) با افزایش تراکم ناخالصی فلوئور تا نسبتSnO2:F(20 wt%)  افزایش یافته است که با افزایش نسب وزنی بالاتر شدت آن کاهش پیدا کرده است.

با افزایش تراکم یونی فلوئور، تغییر قابل ملاحظه­ای در پارامتر شبکه مشاهده نشد که به­دلیل شعاع یونی کوچکتر F1- (1.17Å) در مقایسه با شعاع یونی O2-(1.22Å) است[15-13]....

عکس میکروسکوپ نیروی اتمی (AFM) دو بعدی برای لایه نازک (20 wt%) SnO2:F در شکل (1-17) نشان داده شده است. همان­طور که مشاهده می­شود لایه از ذرات مثلثی[1] شکل تشکیل شده است. میانگین اندازه ذرات 230 نانومتر می­باشد[12]....

خواص اپتیکی لایه­ های نازک SnO2:F

شفافیت اپتیکی لایه­های نازک SnO2:F  در شکل (1-18) نشان داده شده است. شفافیت اپتیکی لایه­ها در ناحیه مرئی در جدول (1-2) آورده شده است. همان­طور که مشاهده می­شود بیشترین شفافیت اپتیکی  در طول موج nm550 به لایه با ناخالصی FTO(20wt.%) مربوط می­شود. اما با افزایش تراکم ناخالصی فلوئور شفافیت اپتیکی لایه­ها کاهش می­یابد که تغییرات شفافیت لایه­ها به  تغییر چگالی حامل­های بار آزاد وابسته است. با رسم نمودار2  (αhν)بر حسب  hν مقدار گاف نواری حدودeV  15/4 محاسبه شده است....

 

 

فهرست مطالب

 خواص فیزیکی نیمرسانای اکسید شفاف SnO2 با ناخالصی­های مختلف 1

1-1: مقدمه 1

1-2: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع تهیه شده به روش­های لایه­نشانی 2

1-2-1: اسپری پایرولیزیز 2

1-2-2: روش کندوپاش واکنشی 6

1-2-3: روش تبخیر حرارتی 8

1-3: مروری بر خواص فیزیکی لایه­های نازک اکسید قلع آلاییده شده با ناخالصی­های مختلف 12

1-3-1: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع آلاییده به فلوئور 12

1-3-1-1: خواص ساختاری لایه­های نازک SnO2:F 13

1-3-1-2: خواص  اپتیکی لایه­های نازک SnO2:F16

1-3-2: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع با ناخالصی آنتیموان 17

1-3-2-1: خواص ساختاری لایه­های نازک SnO2:Sb18

1-3-2-2: خواص اپتیکی لایه­های نازک SnO2:Sb20

1-3-2-3: خواص الکتریکی لایه­های نازک SnO2:Sb21

1-3-3: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع با ناخالصی مس.22

1-3-3-1: خواص ساختاری لایه نازک SnO2:Cu22

1-3-3-2: خواص اپتیکی لایه نازک SnO2:Cu  23

1-3-3-3: آنالیز EDAX لایه نازک SnO2:Cu  24

1-3-4: مطالعه خواص فیزیکی لایه­های نازک نیمرسانای شفاف SnO2:Al25

1-3-4-1: خواص اپتیکی لایه­های نازک  SnO2:Al 25  

1-3-5: مطالعه خواص فیزیکی لایه­های نازک SnO2:(F+Sb)27

مراجع 30

 

  

فهرست جدول­ها

جدول 1-1: شرایط جایگذاری لایه­های نازک اکسید قلع ­ 2

جدول 1-2: تغییرات ثابت­های شبکه و اندازه بلورک­ها برای لایه نازک SnO2 در دماهای مختلف 4

جدول 1-3نتایج آنالیز عنصری EDAX لایه­های نازکSnO2 با ضخامت­های مختلف 10

جدول 1-4: مقادیر گاف نواری لایه­های نازک SnO2 11

جدول 1-5: نتایج اندازه­گیری­های الکتریکی، اپتیکی و ساختاری لایه­های نازکF :SnO2 14

جدول 1-6: پارامترهای گوناگون محاسبه شده برای لایه نازکSb: SnO2اسپری شده با حجم­های مختلف 19

جدول 1-7:ویژگی­های الکتریکی اندازه گیری شده لایه­های نازک Al: SnO2 27

جدول 1-8: ­اطلاعات XRD لایه(F+Sb)  : SnO2 28

جدول 1-9: ثابت­های شبکه لایه(F+Sb)  :  SnO2 ­ 29

جدول 1-10: نتایج اندازه­گیری الکتریکی لایه(F+Sb) : SnO2   29

 

 

فهرست شکل­ها

شکل 1-1:تصویری ازدستگاه اسپری پایرولیزیز 3

شکل 1-2:طرح­های XRD لایه­های SnO2 دردماهای مختلف :(a) 0C300، (b) 0C400،0C (c)500 3

شکل 1-3: طیف EDAX لایه نازک  SnO2دردمای0C400 4

شکل 1-4: عکس SEM لایه نازک SnO2 5

شکل 1-5: گاف نواری لایه­های نازک SnO2 5

شکل 1-6:طیف­های XRDلایه­هایSnO2 (a) بدون باز پخت ،  (b)بابازپخت 6

شکل 1-7:طیف XRD پودر   SnO2خالص 7

شکل 1-8: تصاویر AFM لایه نازک SnO2 (a) قبل، (b) بعد از بازپخت 7

شکل 1-9: شفافیت اپتیکی لایه­های نازک SnO2 8

شکل1-10 طرح­های XRD لایه­های نازک SnO2 با ضخامت­های (a) nm200، (b) nm 600. 9

شکل1-11عکس­های SEM لایه­های نازک SnO2 با ضخامت­های (a) nm 300، (b) nm 400 9

شکل 1-12: طیف­های EDAX لایه­های نازک SnO2  با ضخامت­های (a) nm 300، (b) nm 400 10

شکل 1-13: شفافیت اپتیکی لایه­های نازک SnO2 با ضخامت­های مختلف . 11

شکل 1-14: گاف نواری لایه­های نازک  SnO2. 12

شکل 1-15: : طرح­های پراش پرتو ایکس لایه­های نازک(0-60 WT%) SnO2:F 13

شکل 1-16: عکس­های SEM لایه­های نازک (0-60 WT%)  SnO2:F 15

شکل 1-17: عکس­ AFM دو بعدی برای لایه نازک F(20%):SnO2   15

شکل 1-18: طیف عبور لایه­های نازکFTO  با مقادیر مختلف ناخالصی فلوئور   16

شکل 1-19: تغییرات چگالی حامل و تحرک­پذیری لایه نازک FTO با مقادیر مختلف ناخالصی فلوئور 17

شکل 1-20: طرح­های XRD لایه­های SnO2:Sb برای جحم­های مختلف محلول اسپری 18

شکل 1-21: تغییرات اندازه میانگین بلورک برای لایه نازک SnO2:Sb با حجم محلول مختلف 19

شکل1-22تصاویر SEM لایه­های نازک SnO2:Sb برای (a)  cc 20، (b)  cc30، (c) cc 40 20

شکل 1-23: تغییرات عبور  با طول موج برای لایه­های SnO2:Sb 20

شکل 1-24: طرح پراش لایه نازک SnO2:Cu 22

شکل 1-25: تصویر SEM لایه SnO2:Cu  23

شکل 1-26: شفافیت اپتیکی لایه نازک SnO2:Cu 23

شکل 1-27: گاف نواری لایه نازک SnO2:Cu 24

شکل 1-28: طیف EDAX لایه نازک SnO2:Cu 25

شکل 1-29: (a) طیف عبور لایه­های نازک SnO2:Al 26

شکل 1-29: (b) گاف نواری لایه­های نازک SnO2:Al 26

شکل 1-30: طیف XRD لایه ( wt%5/0+10) SnO2: (F+Sb) 28


دانلود با لینک مستقیم


لایه های نازک اکسید قلع

مقاله تغذیه دی اکسید کربن

اختصاصی از فی ژوو مقاله تغذیه دی اکسید کربن دانلود با لینک مستقیم و پر سرعت .

مقاله تغذیه دی اکسید کربن


مقاله تغذیه دی اکسید کربن

 مقدار دی اکسید کربن موجود در هوا 0.03درصد و یا حدود 300پی پی ام  می باشد. (هر میلیون کیلوگرم هوا دارای 300کیلوگرم دی اکسید کربن می باشد ) در مناطق صنعتی , باتلاقی و بستر رودخانه ها حدود 400پی پی ام و در برخی مناطق 200 پی پی ام است . 

مقدار دی اکسد کربن موجود در هوا برای فتوسنتز کافی است.

کمبود دی اکسید کربن : در زمستان به علت مسدود بودن گلخانه , تبادلات هئای داخل گلخانه با محیط بیرون به حداقل می رسد و در ساعات آفتابی روز دی اکسید موجود در فضای گلخانه توسط فرآیند فتوسنتز از هوا گرفته شده و مقدار آن در گلخانه بسته مرتب کم می شود (کمتر از 200 پی پی ام ) که باعث کاهش فتوسنتز و توقف رشد می شود . یک برگ آفتابگردان در حال رشد , می تواند 2,4 متر در مدت یک ساعت مصرف کند . میزان دی اکسید کربن موجود در گلخانه بسته در عرض چند ساعت می تواند به نقطه بحرانی خود برسد ( پایین ترین حد ممکن ) و باعث بازماندن از رشد شود . مقدار بحرانی دی اکسید کربن 125- 25 پی پی ام است . ادامه کمبود دی اکسید کربن باعث طولانی شدن دوره کشت و کاهش کیفیت محصول می شود.

میزان دی اکسید کربن موجود در خاک بین 2500  - 2000 پی پی ام  متغیر است . منبع تولید این گاز در خاک تجزیه مواد آلی خاک و تنفس ریشه می باشد . دی اکسید کربن از میان ذرات خاک انتشار می یابد . این گاز با آب ترکیب شده و تبدیل به کربنات و بی کربنات پتاسیم و منیزیم می شود . وجود دی اکسید کربن در خاک با کم کردن میزان اکسیژن خاک موجب کاهش رشد گیاه می شود . زهکشی ضعیف و غرقاب شدن خاک باعث کاهش میزان اکسیژن و افزایش دی اکسید کربن خاک می شود .

تزریق دی اکسید کربن : افزایش غلظت دی اکسید کربن تا میزان 1500 1000 پی پی ام برای اکثر گیاهان مفید است . البته افزایش دی اکسید کربن در فتوسنتز بستگی به سایر عوامل موثر در فتوسنتز دارد . غلضت بالای دی اکسید کربن برای گیاه سمی است و باعث کاهش عملکرد کلروزه شدن( بین رگبرگ ) و نکروزه شدن برگ می شود . سطح آستانه دی اکسید کربن در گیاهان مختلف متفاوت است . مثلادر گوجه فرنگی 2200 و در خیار 1500 پی پی ام می باشد . در کاهو تزریق 1600 پی پی ام دی اکسید کربن باعث 31 درصد افزایش محصول و 20 درصد زود رسی می شود . در گوجه فرنگی تزریق 1000پی پی ام باعث 48 درصد و در خیار تزریق 1000پی پی ام دی اکسید کربن باعث 33 درصد افزایش عملکرد می شود

 

 

 

 

 

این مقاله به صورت  ورد (docx ) می باشد و تعداد صفحات آن 42صفحه  آماده پرینت می باشد

چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد

مقالات را با ورژن  office2010  به بالا بازکنید


دانلود با لینک مستقیم


مقاله تغذیه دی اکسید کربن