فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم

اختصاصی از فی ژوو تحقیق در مورد تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم


تحقیق در مورد تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه34

فهرست مطالب

مقدمه

تعریف مسئله اهداف مطالعه مدل فکری

روش شناسی تحقیق

 

محدویت های و فرض تحقیق

مهمترین رویداد صنعت نساجی دنیا تاریخ مدرن صنعت نساجی مصر ساختار صنعت نساجی مصر ساختار صادرات منسوجات مصر مدل دینامیکی سیستم صنعت منسوجات مصر نمودار حلقه سببی نمودار جریان ها و سهام شرح نمودار حلقی سببی و حلقه های فیدیک

تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم

 

خلاصه:

 

مصر همیشه به عنوان یک صادره کننده کیفیت بالای منسوجات پنبه ای و پنبه خام مشهور بوده است. پنبه مصری برای ویژگی های خاصی که مصرف کنندگاه بازار با موقعیت مناسب را جذب می کند شهرت بین المللی دارد.تحت شرایط محیطی بسیاری صادرات پنبه خام ومنسوجات پنبه ای مصر کاهش یافت که به مسائل اجتماعی واقتصادی منتهی شد. وضعیت فعلی صنعت منسوجات مصر وکاربردهای آتی چندین توافق نامه تجاری دوجانبه وجهان از طریق زنجیره ارزش منسوجات که با کشاورزان شروع و با صادرکنندگان خاتمه می یابد، سیگنال های خطر شدیدی را به کارگران ارسال کرد. جورکردن مزیت رقابتی با فرصت های به دانش عمیق صنعت ومدل ذهنی که آن را مطرح می سازد نیاز دارد. پیاده کردن دینامیک سیستم مجازی که صنعت منسوجات را کنترل می کند یک نیاز ضروری برای پیدا کردن راهی برای عوض کردن وضعیت فعلی صنعت وآماده کردن  آن برای چالش های بعدی است.

 

ابن مقاله می خواهد یک مدل دینامیک سیستم برای صنعت ناجی مصر تهیه کند که می توان برای تست کردن ایده های تغییر بکار برد تا وضعیت

 


دانلود با لینک مستقیم


تحقیق در مورد تاثیر مخلوط بازاریابی بر صادرات منسوجات مصری با استفاده از شیوه دینامیک سیستم

اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم

اختصاصی از فی ژوو اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم دانلود با لینک مستقیم و پر سرعت .

اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم


اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم در این مقاله ی کاربردی با فرمت Pdf اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم مورد تحقیق و پژوهش قرار گرفته است
اثر افزایش مس بر پروفیل حرارتی واکنش تولید دی سیلیسید مولیبدن به روش سنتز احتراقی بررسی شد .مشاهده گردید که افزایش مس موجب کاهش دمای احتراق, کاهش زمان شکل گیری محصول یا بهعبارت دیگر افزایش سرعت واکنش, و کاهش انرژی اکتیواسیون واکنش میگردد.

دانلود با لینک مستقیم


اثر افزایش مس بر پروفیل حرارتی سنتز احتراقی مخلوط مولیبدن و سیلیسیم

دانلود مقاله ترکیب جامدات در وسایل مخلوط کن مختلف

اختصاصی از فی ژوو دانلود مقاله ترکیب جامدات در وسایل مخلوط کن مختلف دانلود با لینک مستقیم و پر سرعت .

 

خلاصه : ترکیب پودرها عملکردی شایع در تمامی صنایع است . بیشتر پودرها به چسبندگی معروفند و بسیاری از آنها وقتی در معرض هوای مرطوب یا در دمای بالا قرار می گیرند ، انباشته می شوند . مخلوط کردن پودر ممکن است منجر به انتقال ذرات کوچکتر به سمت پائین و ذرات بزرگتر به سمت بالا شود . مشکل دیگر تفکیک است که علت اصلی آن تفاوت در اندازۀ ذرات شکل تراکم و جهندگی است . دستگاه های مخلوط کن استانداردی مانند لیوان های استوانه ای شکل یا مخلوط کن های توربولا وجود دارد . دستگاه جایگزین استفاده شده مخلوط کن ثابت نوع کنسیس است . مخلوط کن های ثابت انرژی را ذخیره می کنند ، مانع تفکیک و انتقال ذرات می شوند. در این نوشته ، مخلوط کن های ثابت به عنوان وسایلی برای ترکیب پودرها مانند مخلوط کن های v شکل و توربولا امتحان می شوند و معمولاً برای ترکیب پودرها در صنعت بکار می روند . مخلوط هایی که با این سه وسیله مخلوط می شوند خارج از مواد نمونه ، شن کوارتز در نسبت های متفاوت بکار می روند . (30:70 و 2:80) نتایج را رضایتمندانه محاسبه کردیم آن را نوشتیم و ارائه کردیم . شاخص های پیوند را با استفاده از آنالیزور گردش ذرات به منظور مشاهدۀ تاثیر گردش مواد ددر کیفیت ترکیب اندازه گرفتیم . نتایج بدست آمده ازا ین سه وسیله ، تاثیر اندازه ی ذرات و شاخص های پیوند ما را به این نتیجه می رساند که مخلوط کن های ثابت می توانند برای ترکیب پودرها استفاده شوند اما شکل آنها ، تعداد عناصر ترکیبی و طول مخلوط کن برای هر ترکیب باید جداگانه آزمایش و از لحاظ ریاضی در طول نمونه یابی سیستم انحاذ شود.
کلمات کلیدی : ترکیب – گردش پذیری – مخلوط کن – رقم پارامتری

 

1- مقدمه
اختلاط ترکیبات را پخش یک فاز در فازی دیگر عملی است که در صنعت فراوان صورت می گیرد . هدف این عملکرد ساخت محصولی همگون با استفاده از حداقل انرژی و زمان است . سختی ها بواسطه ی گوناگونی محصولات برحسب اندازه – ذرات یا دانه های ریز ، شکل – ذرات بی شکل ، رطوبت و ماهیت سطح – چسبندگی و غیر چسبندگی پودرها ، آشکار می شوند . در ترکیب انواع مختلف مواد سه جنبه ی وسیع وجود دارد . نوع مخلوط کن انتخاب یا طرح شده و سبک عملکرد آن ، مشخصه بندی حالت نهایی مخلوط کن و میزان مکانیزم فرآیند ترکیب در این حالت مطرح می شود . فرآیند ترکیب به شدت تاثیر ویژگی جریان مواد مخصوص ترکیبی است . شناخت موجود دو نوع مادۀ خاص ، جریان پذیری و چسبندگی آزاد ، به منظور طبقه بندی و مشخصه بندی ترکیبات و فرآیندهای اختلاط شکل می گیرد . تفاوت در مشخصه های فیزیکی به ترکیب و عدم ترکیب کمک می کند و پیش بینی نقطه همگونی عملاً غیر ممکن می شود. مکانیزم ترکیب نتیجه ی مشخصه هایی هیدرو دینامیک و جریان شناسی همانند تقابلات فیزیکی و شیمیایی بین ترکیب کننده هاست . تفاوت شکل در پودرها سیارست و محدوده نر آنها از اشکال بلوری خوش ترکیب و بی شکل می باشد . مشخصه های فیزیکی و شیمیایی مواد ، هندسه ، ویژگی های سطح و اندازه و ذرات و تاریخچه ی کلی سیستم ، مشخصات عمدۀ پودرهای خوب را مشخص می ند . بیشتر پودرها به چسبنده بودن معروفند . بسیاری پودرها و قتی در معرض هوا یا دمای بالای انبار قرار می گیرند انباشته می شوند . این پدیده می تواند منجر به وجود توده های نرم کوچک که به راحتی می شکنند ، گلوله های سفت در اندازه های متفاوت یا استحکام توده ی پودری می شود . مشکل بزرگ دیگر در مورد پودرها تفکیک است که هنگامی که ذرات با ویژگی های متفاوت در بخش های متفاوت بستر پخش می شوند ، اتفاق می افتد . تفاوت اصلی مسئول تفکیک از لحاظ اندازۀ ذرات ، تراکم ، شکل و مقاومت متفاوت هستند که در سیستم های واقعی اجتناب ناپذیر است . کلاً فرآیند تفکیک وقتی اتفاق می افتد که پودرهای آزاد محدودۀ چشمگیری از اندازۀ ذرات دارند که در معرض برخی حرکات مکانیکی است ؛ ذرات به قعر بستر حرکت می کنند بنابراین تجمع آنها همزمان با ارتفاع بستر ، کاهش می یابد . تفاوت در این ویژگی ها می تواند باعث عدم ترکیب یاتفکیک در طی ترکیب یا جنبش مکانیکی ترکیب شود . در کل ، موادی که از لحاظ اندازه ، شکل و تراکم مشابه هستند ، قادرند که اکثر ترکیبات نافرم را شکل دهند .
ما وسایل مخلوط کن را با توجه به تفکیک به دو گروه دسته بندی کرده ایم : مخلوط کن های تفکیک – که مکانیزم های انتشاری اساسی دارند ، تشویق حرکت ذرات منحصر به فرد ، تفکیک کردن با اهمیت بیشتر ، مخلوط کن های نوع غیر پروانه مکنده تمایل دارند از این نوع باشند .
مخلوط کن های کم تفکیکی تر ، اساساً مکانیزم های اختلاط همرفتی دارند . اینها معمولاً نوع پروانه مکنده هستند که در آنها تیغه ها ، پیچ ها ، دو شاخه ها و غیره که ذرات را در منطقه ترکیب از سمتی به سمت دیگر حرکت می دهد . وسایل مخلوط کن بر طبق مواد مخلوط شده انتخاب می شوند ؛ بنابراین دانستن اندازۀ ذرات همانند مشخصه های گردش آنها مهم است . تنوع پودرها از روش های بسیاری نشأت می گیرد که در آن ویژگی های گردش مثل ویژگی های فیزیکی اجزای پودر مانند اندازۀ آنها ، محدودۀ اندازه ، شکل ، سفتی ، قابلیت ارتجاعی ، نفوذ پذیری ، توده ، تقابل بین اجزاء ، بافت ، زاویه داری و غیره ، ممکن است تغییر کنند . عوامل محیطی روی مشخصات عمده ی پودر مثل محتوای نم یا هوا ، فشار خارجی ، لرزش و غیره تاثیر می گذارند . این عوامل توزیع فیزیکی و تنظیم اجزا در تودۀ پودری را تغییر می دهد . تغییرات اجزای منحصر به فرد به وسیله ی عواملی مثل فرسایش ، انباشتگی ، تغییرات شیمیایی صورت می گیرد .
با به حساب آوردن عوامل ذکر شدۀ بالا ، آزمایشات با سه دستگاه مخلوط کن مختلف انجام شد . اولین دستگاه مخلوط کنی v شکل کلاً سبک بود که در صنعت به منظور ترکیب پودرها ، بسیار استفاده می شود . دومین آن ، مخلوط کن توربولا بود که به خوب ترکیب کردن پودرها معروف است . سومین دستگاه مخلوط کن مورد استفاده ، مخلوط کنی ثابت بود نه یک میکسر معمولی برای پودرها اما بیشتر برای ترکیب مایعات و غیر سیال نیوتونی استفاده می شود . یکی از علایق ، کشف چگونگی واکنش مخلوط کن ثابت هنگام ترکیب پودرها بود و اینکه آیا آن می توانست با در نظر گرفتن ویژگی های مواد ( اندازۀ اجزا ، ویژگی های گردش ) مخصوصاً به عنوان یک وسیله ی اضافی برای تکمیل ماشین ها به منظور جلوگیری از تفکیک ، جایگزین برخی مخلوط کن های ثابت شود .
ترکیب جامدات در وسایل مخلوط کن مختلف
ظرف مخلوط کن های v شکل : نمودار 1
2- مواد و روش ها
سه وسیله ی مورد استفاده و مختلف ترکیب کردن عبارت بود از : مخلوط کن چرخندۀ وی (v) شکل ، مخلوط کن لرزاننده ی توربولا و مخلوط کن ثابت . هدف این عمل قیاسی ، ارزیابی اثر پارامترهای فرآیند متنوع مثل اندازه ی ذرات ، سطح تکامل و سرعت چرخش در ترکیب بود .
مخلوط کن v (نمودار 1 ) شامل دو بخش استوانه ای است که در زاویه ی حدود 90 درجه بهم متصل شده اند که برای عملکرد دسته ای طراحی شده است . زاویه بین استوانه و خط مرکزی در خارج از محور ظرف چرخنده 40 درجه است . مخلوط کن های حول محور افقی می چرخد که منجر به ترکیب ذرات معلق می شود . میزان شکست نهایی پودرها در مخلوط کن بین 50 و 60% است . مواد موجود در مخلوط کن نهایتاً به سوی رأس و سپس پایه های v حرکت می کنند . اجزای مواد در دو سمت عمودی و افقی حرکت می کنند بطوریکه ترکیب به شکل کامل روی می دهد . ظرفیت ظرف 2 لیتر بود و پوششی داشت برای پر و خالی کردن محصولات .
مخلوط کن لرزاننده توربولا ( نمودار 2 ) برای ترکیب همگون مواد پودری با اوزان خاص و اندازه های ذرات مختلف استفاده می شود . محصول در ظرف دربسته ی خودش ترکیب می شود . کارائی استثنائی مخلوط کن لرزاننده ی توربولا از استفاده از چرخش ، تبدیل و واژگونی طبق نظریه ی هندسی شانز نشأت می گیرد . ظف مخلوط کن در حرکتی سه بعدی قرار داده می شود که محصول را مداوماًٌ تحت تغییر و حرکت ریتمیک کوبنده ای قرار می دهد . آن بوسیله ی چرخش جامدات درون یک ظرف چرخنده با سرعت حدود rpm 40 عمل می کند ( حدود نصف سرعت انتقادی که در آن نیروی گریز از مرکز به کشش گرانشی پیش می گیرد ) ظرفیت کار آن حدود 50 تا 60 درصد است .
ویژگی های ابعاد فیزیکی نمونه مخلوط کن توربولای 2TF همانند دیگر مخلوط کن ها در جدول 1 آمده است .

 


مخلوط کن توربولا : نمودار 2
مشخصات فیزیکی شن کوارتز : جدول 1
در مخلوط کن ثابت ( نمودار 3 ) مکانیزم اصلی در ورقه های نازک تقسیم گردش است . سبک عناصر شمسی یا ، ساختگی – شمسی است و در مجموعه از نخ های 180 درجه دست چپ و راست تنظیم شده است . تیغه ی یک عنصر که در مورد دیامتر است در 90 درجه انتهای تیغه پروانه عنصر بالاست . در تقسیم گردش ، تیغه مقدم عنصر اول با ورود به مخلوط کن 2 بار ، مواد را تقسیم می کند و سپس 180 درجه می چرخد . عنصر دوم جریان را دوباره این بار 4 دفعه قسمت می کند و پس از آن باز چرخش 180 در جه برخلاف جهت اتفاق می افتد . سومین عنصر فرآیند را با تقسیم به 8 جریان تکرار می کند . همچنانکه تعداد جریانات لایه ها افزایش می یابد ، ضخامت لایه کم می شود . کیفیت مخلوط کن تابع ضخامت مخلوط کن و تعداد عناصرز است و در جریان ورقه های نازک مستقل از میزان گردش یا چسبندگی است . در ترکیب جامد / جامد واحد معمولاً عمودی با جریان ثقل می گردد . مواد زیر مخلوط کن به وسیله ی یک خط اسمبلی کاهش می یابد . مخلوط کن باید کاملاً پر شود چون هر وقت که جای خالی برای شکل دادن مخروط یا سطح محرک وجود داشته باشد ، تفکیک مجدد می تواند روی دهد .
آزمایشات با شن کوارتز که یک مادۀ جاری و آزاد غیر چسبنده است و موادی که از لحاظ اندازه ، توزیع و تراکم عمده متفاوتند انجام شد . ( جدول 2)
تمامی مواد را قبل از استفاده الک کردیم بنابراین اندازه های مختلف گرانولی بدست می آید . این مطالعه را به منظور تمرکز روی عملکرد مخلوط کن ها طراحی نمودیم . ترکیبات را با محتویات اندازه های متفاوت ذارت ، نسبت های مختلف مواد و با باقی ماندۀ کثیری از اجزاء طرح کردیم . آزمایشات را با ترکیبات مواد مشابه و با استفاده از 3 نوع مخلوط کن انجام دادیم .
وسایل مخلوط کننده و ویژگی های آن ها جدول 2
پس از اینکه مواد را ترکیب کردیم نمونه ها را تجزیه نمودیم . نمونه گیری مکرر با توجه به قوانین اصلی نمونه گیری ، پویایی ترکیب را آزمایش کرد . پودر را در مخلوط کن ثابت ترکیب کرده و وقتی در حرکت بود از آن نمونه گیری کردیم . کل جریان با 25 ثانیه فاصله زمانی انجام و توسط دو روش مختلف تجزیه شد . یکی از آن روش ها تحلیل استاندارد گرانولی و دیگری توسط آنالیزور اجزا (( سمپاتیک هلو و کترا )) انجام شد . داده هایی که به این روش بدست آمد محاسبه شد و نتیجه ی آن ترسیم گردید . کارائی ترکیب توسط انحراف استاندارد محتوای حداقل با توجه به جریان عمده در مخلوط کن ثابت اندازه گیری شد . هنگام ترکیب در مخلوط کن های ظرفی ( توربولا ، v شکل ) پس از زمان معینی ، مخلو کن متوقف شده و محتویات استوانه روی سطح صافی خالی شده و با توجه به ضخامت اجزاء استفاده شده الک می شود . تودۀ جریان به نسبت نمونه ها اندازه گیری می شود . سپس کل فرآیند بین فاصله زمانی مختلف که نمونه ها گرفته شدند تکرار می شود برای تجزیه ی نمونه ها در انالیزور لیزری ذرات ، زیر نمونه ها در روش مشابه گرفته و در دستگاه تجزیه قرار داده می شوند . نتایج نشان داد که چگونه بسیاری از ذرات در هر نمونه در یک زمان ترکیب ارائه می شوند .
مدل مکانیکی براساس یک انحراف استاندارد در آغاز و در طی فرایند ترکیب و براساس بخش معاوضه پذیر ترکیب کننده ها با میزان میانگین کل نمونه ها ساخته می شود . از پارامتر های انحراف استاندارد ، مدلی برای پویایی ترکیب ساخته می شود . مدل به نظر می رسد که یک منحنی و اریانس که منحنی را تغییر می دهد می تواند با افزودن توابع تشریحی برای مخلوط و عدم مخلوط توصیف شود . مدل فرسایش می تواند به صورت این معادله ارائه شود .
S2(t) = s20e-k1t + s2(1-e-k2t) +s2a.
مقادیر s20 (واریانس در آغاز ترکیب ) از محتوا تعریف می شود . مقادیر اندازه گیری شده تغییر واریانس در طی فرآیند ترکیب برای تخمین زدن پارامترهای s2 ( واریانس در زمان t) s2a ( واریانس نمونه های شامل ) k1 و k2
( ضریب در یک مدل ) استفاده می شود .برای محاسبه ی روش چهارگوش های غیر خطی استفاده می شود . به عنوان نتیجه ی توابع تکراری غیر خطی استفاده می شود و تا زمانی که مقادیر پارامتر بدست اید تکرار می شود که می تواند بیش از کاهش انشعاب بین داده های اندازه گیری شده و مدلل فرسایش تکرار شود . پس از اینکه پارامتر های مدل فرسایش تخمین زده شود ، زمان مناسب ترکیب به عنوان حداقل واریانس ترکیب منحنی مدل محاسبه می شود .
0 (2) = topt
(3) = t opt

 

تحلیل آماری داده های اکتسابی توسط برنامه اکسل و برنامه تحلیل ریاضی کامپیوتری انجام شد .
ویژگی های گردش مواد در آنالیزور گردش پودر که توسط سیستم میکرو استبل تولید شده بود آزمایش شد . از ابزرای برای پودرهای تر و خشک استفاده می شد که قابل اعتماد بودند و برای ارزیابی هر محصول در گردش استفاده می شد .
نمونه ها تحت شرایط برای حذف تمامی متغییرها در بارگیری و مهندسی دقیق آزمایش شدند ، سپس تیغه های طرح دار روی نمونه چرخیدند و جریانی کنترل شده را سبب شدند . آزمایشات متوالی برای اطمینان از صحت آن تکرار شدند . نمونه ها را در ظرف های شیشه ای بورسیلیکاتی قرار دادیم . در طی آزمایش نیروی محوری ، زمان و فاصله بوسیله ی یک مبدل حساس سنجیده شد و داده ها نشان داده شدند و در زمانی حقیقی بوسیله ی 16 تا 32 نرم افزار تحلیل شدند جریان شناسی مواد شامل یک موقعیت سنجیده شد. سرعت 1-mms100 و زاویه 10 درجه مارپیچ مورد استفاده بودند . نتیجه انرژی جریان پذیری اساسی (BFE) بود که به صورت mj بیان شده انرژی جریان پذیری اساسی ، انرژی مورد نیاز برای جابه جا کردن پودرهای مداوم در یک انرژی محدود همراه با میزان گردش است . کلاً پودرها میزان گردش بیش از 1 و میزان گردش بالا که از لحاظ پتانسیلی فرآیندی مشکل است دارند بنابراین عملکرد انها در طی فرآیند ها تغییر پذیر است .
3- نتایج و مباحث
یک ترکیب می تواند به عنوان تجانس تعریف شود اگر هر نمونه از ترکیب ، مشخصه ها و اجزایی مشابه دیگری داشته باشد نتایج از طریق یک انحراف استاندارد ارائه شده اند و ترکیبی را تعریف کرده اند که انحراف استاندارد صفر دارد .
مشکل اصلی ترکیب پودرها ، تشخیص در اختلاط آنها قبل و بعد از فرآیند ترکیب است . تحلیل گرانولی ان را بدقت توضیح می دهد ؛ بقیه ی مشکل باید بوسیله ی آمار مشخصه بندی شود . مسئله مهم تولید مجدد است که بدست می آید البته با در نظر گرفتن مقادیر کم انحراف استاندارد بدست آمده در تمامی نمونه ها . مخلوط کن ثابت کنیس به عنوان بهترین مخلوط کن شناخته شده و ثابت شده که بهترین نوع برای ترکیب پودرهاست . مخلوط کن ثابت می تواند جایگزین انواع وسایل استاندارد شود و به کیفیت ترکیب در فرآیندهای پر کردن و بسته بندی کمک کند . در طول نگه داری دسته های مختلف ، پودرها تمایل به تفکیک دارند میکسر ثابت به وسایل ذخیره خروجی افزوده شده که منجر به کیفیت نهایی بهتر محصولات می شود .
نسبت ترکیب کننده ها در ترکیب مهم است چون پس از تشخیص اندازه اجزاء ، یکی از دلایل مهم تفکیک یا انباشتگی در مخلوط می باشد . پیش بینی اینکه نسبت 1:1 ترکیب کننده های مختلف همانطور که در نمودار 5 نشان داده شده ، زیاد است ، آسان می باشد . برای مخلوط کن ثابت ، مدل به جدول اضافه می شود تا کیفیت ترکیب ثابت شود . تعداد عناصر در لوله خیلی مهم است وقتی که به ترکیب ثابت مربوط می باشد چون تعداد عناصر ناکافی باعث ترکیب بیش از حد می شود که منجر به کیفیت نامناسب محصول می گردد . همانطور که در نمودار 6 نشان دادیم ، آزمایشات با تعداد عناصر مختلف ( از 1 تا 5 ) و با لوله های خالی برای اثبات اینکه بدون عناصر ، ترکیبی صورت نمی گیرد ، انجام شد.
نمودار 5 - ترکیب به نسبت 1:1 ترکیبات در دستگاه های مخلوط کن مختلف همراه با مدل هایی برای میکسر ثابت

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  17  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ترکیب جامدات در وسایل مخلوط کن مختلف

پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc

اختصاصی از فی ژوو پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc دانلود با لینک مستقیم و پر سرعت .

پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc


پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 95 صفحه

 

چکیده:

در این رساله ، مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتیNaCl(m1)+LiCl(m2)  در محیط آبی و در محدوده غلظتی 0.01 مول بر کیلوگرم تا حدود محلول های الکترولیتی اشباع شده ، بوسیله روش پتانسیومتری در دمایoC  25 مورد بررسی قرار گرفت . انحراف از ایده آلیته برای این مخلوط دوتایی الکترولیتی با تعیین ضرایب میانگین فعالیت  NaCl(m1)در یک سل گالوانی بدون اتصال مایع و با استفاده از یک الکترود یون گزین آمونیوم (Na+ ISE) با غشاء پلیمری حاوی آیونوفور سدیم  ) ( بهمراه یک الکترودAg/AgCl  مورد بررسی قرار گرفت. این بررسی با مدل سازی این سیستم الکترولیتی بر اساس مدل نیمه تجربی برهمکنش یونی Pitzer، با جمع آوری و ثبت رایانه ای داده های پتانسیومتری برای چهار سری مخلوط الکترولیتی این نمک ها (با کسر های مولالی : , 10, 50, 100 1r =m1/m2 =) در قدرت های یونی یکسان انجام گرفت.  بدین ترتیب با تطابق داده های پتانسیومتری و مدل نظری و با استفاده از روش نموداری Pitzer و همچنین با بهره گیری از روش محاسباتی تکرار، پارامترهای مختلف مربوط به ضرایب ویریال برای برهمکنش های یونی دوتایی و سه تایی ( ,   و ) برای نمک خالص NaCl و بویژه پارامترهای مختلف مخلوط الکترولیتی مورد نظر برای بر همکنش های یونی دوتایی (θNa,Li) و سه تایی )  (ΨNa,Li,Clبدست آمد. نتایج پتانسیومتری بدست آمده به خوبی با نتایج مشابه محاسباتی که براساس روش های فشار بخار (توسط Pitzer و همکاران) و نتایج حاصله از روش رطوبت سنجی (که توسط   Guendouziو همکاران) گزارش شده است ، توافق دارد. با توجه به این نکته که استفاده از این نوع الکترودها برای مطالعه تجربی چنین سیستم های حاوی مخلوط الکترولیتی فقط در این آزمایشگاه انجام گرفته است ، نتایج حاصله و روش الکتروشیمیایی ارائه شده با این نوع الکترود ها در بررسی ترمودینامیکی چنین مخلوط های الکترولیتی که دارای مزایایی چون سرعت اندازه گیری بالا و امکان دستیابی به نتایج مربوط به رقت های زیادتر را دربرمیگیرد ، میتواند بعنوان یک روش قابل توجه در بررسی ترمودینامیکی مخلوط های الکترولیتی قلمداد گردد.

 

مقدمه:

کمتر کسی است که از اهمیت محلولها غافل باشد تمام مواد برای اینکه جذب بدن شوند باید بصورت محلول درآیند تا بتوانند از غشاء سلول عبور نمایند. همچنین طبیعت اطراف ما براساس انحلال و عدم انحلال مواد شکل گرفته است .

تاریخ گسترده شیمی بر اهمیت فوق العاده پدیده حلالیت گواهی می دهد . طبیعت اسرار آمیز محلولها، فلاسفه با ستان را به تفکر واداشت کیمیاگران قرون وسطی در جستجوی طلا و زندگانی ابدی بودند از اینرو علاقمند به تهیه آب حیات و حلال جهانی  بودند.

با گذشت زمان و با افزایش علم بشر، علوم و اعتقادات خرافه ای جای خود را به دانش منطقی و بر مبنای واقعیت داد . اما با این وجود با توسعه علم شیمی از اهمیت موضوع کم نشد و شیمیدانان همیشه و در همه جا با مسائل مربوط به حلالیت مواجه می شوند. آنها از تفاوت حلالیت مواد، در فرآیندهای جداسازی و خالص سازی بهره می گیرند و روشهای تجریه ای آنها تقریبا به طور کامل بر ان استوار است. اغلب واکنشهای شیمیایی در فاز محلول انجام می شود و تحت تاثیر حلالیت اجزاء درون محلول قرار دارد. نیروهای جاذبه و دافعه ای که حلالیت یک گونه در فاز مایع یا جامد را تعیین می کنند هر نوع تعادل فازی بین دو یا چند جزء را کنترل می کنند . محلولهای الکترولیت بدلیل اهمیتی که دارند توجه شیمدانان را به خود معطوف داشته اند .

فارای، نخستین شخصی بود که واژه الکترولیت رادر مورد ترکیباتی که محلول یا مذاب آنها رسانای الکتریسیته است به کار برد و واژه های دیگری از قبیل یون، کاتیون، آنیون و غیره را در الکتروشیمی رایج ساخت و بعد از او آرنیوس به مطالعه و بررسی خواص محلولهای الکترولیت پرداخت و نظریه نسبتﴼ دقیق و روشنی را در مورد در رفتار الکتریکی محلولهای الکترولیت بیان نموده و به این ترتیب که واحدهای اجسام الکترولیت در موقع حل شدنشان در آب، به دو یا چند ذره دارای بار الکتریکی تقسیم می شوند و این ذرات باردارد که یون نام دارند عهده دار رسانش الکتریسیته در محلول هستند. تا سال 1920 معلوم شده بود که رفتار الکترولیتها در غلظتهای کم از محلول های غیر الکترولیت متفاوت است .

در سال 1920 میلنر  به صورت تئوری توضیح داد . که علت این تفاوت نیروهای بابرد بلند می باشد. در سال 1923 دبای – هوکل توضیح ساده ای را ارائه دادند که با در نظر گرفتن نیروهای برد بلند بین یونها بدست آمده بود . سپس نظریه پردازهای زیادی، مسئله یک الکترولیت را با دقت زیادمورد بررسی قراردادند و قانون حدی دبای-هوکل را تصحیح کردند. حتی بعضی از این نظریه ها برای توضیح رفتار محلولهای الکترولیت غلیظ به کار رفت. پیشرفتهای مهم در این زمینه درحدود 50 سال گذشته بوده است، که حتی در مورد الکترولیتهای مخلوط، تا غلظتهای نسبتا بالا نیز نظریه هایی ارائه گردید. گوگنهایم معادله دبای- هوکل را برای غلظتهای بالا اصلاح کرد. در سال 1973 پیترز مدل جامعی را برای پیش بینی ضرایب فعالیت الکترولیتها ارائه داد . سپس دانشمندان زیادی از جمله چن ، لی، سون، سیمون، کوپمات و بلوم و ورا این کار را برای پیش بینی نظری ضرایب فعالیت ادامه دادند. علاوه بر این روشهای نظری، روشهای تجربی نیز برای اندازه گیری ضرایب فعالیت وجود دارد . مانند افزایش نقطه جوش، کاهش نقطه انجماد محلول نسبت به حلال، کاهش فشار بخار حلال، فشار اسمزی. که میزان تغییر این خواص در محلولهای الکترولیت چند برابر محلولهای غیر الکترولیت با مولالیته های یکسان است.

سوال اساسی در مورد انحراف از ایده آلی در محلولهای الکترولیت بر پایه نیروهای بین ذرات است لذا در شروع بحث در فصل اول به معرفی نیروهای بین ذره ای و نحوه ای عملکردشان می پردازیم، سپس در مورد انواع محلولها در روابط ترمودینامیکی حاکم بر آنها شرح مبسوطی خواهیم داد ودر آخر مدلهای ارائه شده برای تعیین ضریب فعالیت و روشهای تجربی اندازه گیری ضریب فعالیت را می آوریم. و در فصل دوم نحوه استفاده از روش پتانسیومتری برای تعیین ضرایب میانگین فعالیت برای مخلوط الکترولیتها  و تعیین پارامترهای بر هم کنش یونی دوتایی و سه تایی     برای مخلوط الکترولیت مورد نظر شرح خواهیم داد .

 

فهرست مطالب:

چکیده

مقدمه

بخش اول - مبانی نظری

 نیروهای بین ذره ای

1-1-1 برهم کنش های بلندبرد

1-1-2      برهم کنشهای کوتاه برد

1-2 محلولها و روابط ترمودینامیکی آنها

1-2-1 محلول ایده آل

1-2-2 روابط ترمودینامیکی محلولهای ایده آل

1-2-3- محلولهای با قاعده

1-2-4 محلولهای غیر ایده آل

1-2-5 ترمودینامیک محلولهای غیر ایده آل

1-2-5-1 پتانسیل شیمیایی حلال، فعالیت حلال و ضریب اسمزی در محلولهای غیر ایده آل

1-2-6 معادله گیبس – دوهم برای محلولهای الکترولیت دوجزئی و رابطه بین ضریب فعالیت و ضریب اسمزی

1-3 مدل های توصیف کننده محلولهای الکترولیتی

1-3-5 مدل دبای- هوکل

1-3-2- 1 پتانسیل در همسایگی یک یون

1-3-1-1- ایرادات نظریه دبای هوکل

1-3-2 مدل گوگنهایم

1-3-3 مدل مایزنر وکوزیک

1-3-4 مدل هیدراسیون استوکس و رابینسون

1-3-5 مدل براملی

1-3-6 مدل برهم کنش یونی پیتزر

1-3-6-1 معادلات پیترز برای محلول الکترولیتی یک جزئی

1-3-6-2  معادلات پیترز برای مخلوط های دو جزئی الکترولیت های

1-4- روشهای تجربی اندازه گیری ضرایب فعالیت

1-4-1 تنزل نقطه انجماد

1-4-2 افزایش نقطه جوش

1-4-3    تنزل فشار بخار

1-4-3-الف – روش استاتیک

1-4-3- ب  روش دینامیکی

1-4-4- روش ایزوپیستیک یا تعادل فشار بخار

1-4-5- روش رطوبت سنجی

1-4-6  روش حلالیت و نفوذ

1-4-7  روش هدایت سنجی

1-4-8  روشهای الکتروشیمیایی

1-4-8-1 استفاده از مدل برهم کنش یونی پیترز با استفاده از روش الکتروشیمیایی

بخش دوم - بخش تجربی

2-1 تجهیزات دستگاهی

2-2 مواد شیمیایی

2-3 تهیه محلولها

 2-3-1- تهیه محلول غلیظ لیتیم کلرید با غلظت تقریبی

2-3-2  تهیه محلولهای اولیه غلیظ دوجزئی NaCl + LiCl با نسبتهای مولی مختلف(r =m1/m2)

2-3-2-1- تهیه محلول غلیظ اولیه دو جزئی NaCl + LiCl با نسبت مدلی (r=100)

2-4  روش پتانسیومتری با استفاده از الکترودیون گزین (سلول الکتروشیمیای بدون اتصال مایع)

2-5 روش افزایش استاندارد

2-6 تعیین ضرایب میانگین فعالیت بروش پتانسیومتری

2-6-1- جمع آوری داده های تجربی

2-6-2 کنترل کیفیت پاسخ دهی الکترودها

2-6-3  تعیین شیب نرنستی و همزمان دو الکترود در سلول بدون اتصال مایع (شیب وثابت سل)

2-6-4 روش تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی الکترولیت 1 1(NaCl + LiCl)با نسبتهای مدلی مختلف

2-6-4-1     تعیین ضریب انتخابگری پتانسیومتری الکترود Na+ نسبت به یون Li+ (k12)

2-6-4-2    روش تعیین ضرایب میانگین فعالیت

2-6-4-3   تعیین پارامترهای در سیستم محلول یک جزیی NaCl

2-6-4-4  تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی NaCl+LiCl با نسبت های مولی مختلف

2-7- نتیجه گیری

جداول و نمودارها

منابع

خلاصه انگلیسی

 

منابع و مأخذ:

[1] pitzer , k, Mayorga, G,’ “J.phys.chemistry” ,1973,77,19,2300,2308

[2]pirzer , k“J.phys.chemistry”,1977,10,371-372

[3]Clegg, s, pitzer, “J. phys. Chem.” , 1992,96,3513,350

[4]pitzer, k,Simonson, J,” J . phys. Chem”1986,90,3005-3009

[5]pitzer, k ,”J. phys chem.” ,77,2,268-277

[6]Hildebrand, J.H., prausnitz, Scott,R.L ,”Regular and Related Solution” van norstrand  Reinhold . co , Newyork (1970)

[7]Rowlinson,J.S.,Swinton.F.L”.liquidmixtures”,3rded.Butter worth&Co(1982)

[8]Berry.R.S;Rice, S.A; Ross,J; “J. physical chemistry” ,John wiley & Sons, Newyork 1980

[9]Barrow, G.M;” physical chemistry” 4thed ;Mc Graw Hill( 1988)

[10] Levine, I.N;” phtsical chemisty”   

[11] Atkinz,p.W; “3 physical chemistry”5ed Oxford university press,1995

[12]Skoog,D; West,D.M; “Fundamentals of analytical chemistry”,4 ed Holt- Saunders International( 1982)

[13]CASTELLAN,G.W;” plysical chemistry”,1 ed Addison – Wesley publishing Co,( 1964)  

[14]Pitzer K.S,Mayorga.G."J.Sol.Chem",1974,10,371

[15]Deyhimi.F,Ghalami.B,"J.of Electroanalytical Chemistry"2005

[16]Lewis  G.N,and Randal M.,Pitzer K.S"Phys.Chem" Mc Graw Hill,New York,1961

[17]Pitzer K.S,"J.Phys.Chem"197713,371

[18] Pitzer K.S,Simonson J.,"SJ.Phys.Chem",1989,4,320

[19] Hovath,A.L.,(1985),”Handbook of Aqueous Electrolyte Solution”Ellis Horwood Series In Physical Chemistry.                                                        

[20] Harned,H.S.,Owen,B.B.,(1958)”Physical Chemistry Of Electrolyte   Solution”,Reinhold,N.Y.                                                                         

[21] Deyhimi F;talanta,1999,50,1129                                                            .

[22] Krus,P.,(1977),”Liquids and Solution Structure Dynamics”Marcel            Dekkerinc.,Ny.                                                                                        

[23]Malatesta F. Zaboni R.,"J.Sol.Chem",1977,26,791

[24] Barrow, G.M;” physical chemistry” 5thed ;Mc Graw Hill( 1988)

[25] Robinson,R.A.,Stokes,R.H.,(1959),”Electrolyte Solution”

                                                                         Butterworths Scentific,London.                                   

[26]Parsafar G.A;Mason E.A;"J.Phys.Chem",1993,97,35,9048

[27] Chen C.C,Eva L.B,A.I.Ch.E.J.,1986,32,444

[28] Chen.C.C,Brit.H.I,Boston.J.F,Evans.L.B.A.I.Ch.E.J,1982,28,588 

[29] Pitzer,K.S.,(1979),”Activity Coefficient of Electrolyte Coefficient” Eeditd by Pytkowitcz,R.M.,CrC.Press.

[30] Walter,j.,Wu.Y-C.,(1972),J.Phys.S.Chem.Ref,Data,1,4,1047               

[31] .Scatchard,G.,Prentiss.S.S.,(1934),George Scatchard and S. S. Prentiss, 56, 2314                                                                            

[32] Lee,L.L.,(1988),J.Chem.Phys.,78,5270                                              

[33] Guggenhaim,E.,(1935),Phi,Mag.,19,313.                                              

[34] Chiristenesen,C.,Sander,C.B.,Frdenslund,A.,Rasmussen,P.,(1983),      

Fluid Phase Equilibria,13,279.                                                               

[35] Chorng,S.,Hirata,S.,F.,(1997),101,3209                                                 

[36]  Samoilov,O.Ya.,(1965),”Stracture of Electrolyte Solution and The Hydration of Ions”,Consultants Bureau Enterprise INC.,N.                   

[37] Harvey,A.H.,Copeman,T.W.,Prausnitz,J,M.,(1988),J.Phys.Chem.,92,  

,64,32,                                                                                                      

[38] Stokes,R.H.,Robinson,R.A.,(1948),J.Amer.Chem.Soc.,70,1870.          

[39] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos    Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.

[40] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.

[41] Meissner,H.P.,(1980),”Thermodynamics of Aqueous Systems With Industirial Appilcations”,edited by Newman,S.A.,Acs Sym Posium

[42]Gering.K.L.,(1964),J.Amer.Chem.Soc.,86.127.

[43]  پایان نامه دوره کارشناسی ارشد,سلامت,رحمن,زیر نظر دکتر دیهیمی,دانشگاه شهید بهشتی2003

[44]طر ح پژوهشی,دانشگاه شهید بهشتی ,گروه شیمی مجری طرح فرزاد دیهیمی,یک روش جدید ضرایب گزینش پذیری الکترود های یون گزین                                                                                  


دانلود با لینک مستقیم


پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc

دانلود پایان نامه بررسی راندمان تولید علوفه در کشت مخلوط سویا و ذرت علوفه‌ای

اختصاصی از فی ژوو دانلود پایان نامه بررسی راندمان تولید علوفه در کشت مخلوط سویا و ذرت علوفه‌ای دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه بررسی راندمان تولید علوفه در کشت مخلوط سویا و ذرت علوفه‌ای


دانلود تحقیق بررسی راندمان تولید علوفه در کشت مخلوط سویا و ذرت علوفه‌ای

با نگرش عمیق به تحولات 50 ساله اخیر چنین نتیجه‌گیری می‌شود که به مسأله اکولوژی یعنی رابطه موجودات زنده با محیط توجه نشده و بشر به دخل و تصرفهای بی‌رویه و بیش از حد طبیعی آنرا از حالت اعتدال خارج کرده و بصورت مخاطره‌انگیزی درآورده است.
روند تخریب و بهم خوردن تعادل اکولوژی در حالی ادامه دارد که جمعیت جهان رو به افزایش است و اگر چاره‌ای برای افزایش تولیدات کشاورزی و حفظ  محیط زیست نشود بروز قطعی از واقعیت درونیست، بشر تاکنون تدابیر گوناگونی اتخاذ کرده است و بوسیله بکار بردن تکنولوژی استفاده از ژنتیک، دادن کودهای شیمیایی فراوان، بصورت سموم گیاهی و.‌.. توانسته است بخشی از نیاز موادغذایی را بصورت منطقه‌ای برآورد کند. بنابراین باید بفکر تأمین مواد غذایی بدون آلوده کردن محیط زیست طبیعی بود.
برای نیل به این هدف با الهام گرفتن از طبیعت که خود بهترین راهنماست و همچنین بکار بردن تجربیات پیشینیان و با حداکثر استفاده محیطی از قبیل نور، آب و مواد غذایی روشی اتخاذ کرد که بتوان میزان تولیدات کشاورزی را افزایش داد یکی از راههایی که ما را به این هدف نزدیک می‌سازد کشت گیاهان بصورت مخلوط است.

تاریخچه کشت مخلوط:
اگرچه تاریخ رونی برای زراعت چندکشتی و مخلوط وجود ندارد ولی با توجه به شواهدی که اشاره شد رویش گیاهان بصورت توأم سابقه طولانی داشته و احتمالاً تاریخ آن به نخستین دوره‌هائیکه بشر با کشاورزی آشنا گردیده برمی‌گردد.
کشت گیاهان زراعی به صورت توأم از مناطق استوائی شروع شده ناحیه آمازون و حوضه رودخانه‌های زهکشی منطقه orinoco بعنوان یک مرکز زراعت چندکشتی مرکب از گیاهان غده‌ای و دانه‌ای شناسایی شده است.
همزمان با مهاجرت بشر به نواحی مختلف و ایجاد مستعمرات کشورهای اروپایی در قرون 16 و 17 این نوع زراعت توسعه یافت ذرت از گیاهانی است که تاریخچه کشت آن بصورت مخلوط نسبت به گیاهان دیگر نسبتاً جدید است. در دوران استعمار گیاهانی شامل موز، نیشکر بصورت مخلوط در مزارع کشت می‌شوند.
ترکیب گیاهان در مخلوط بستگی به شرایط محیطی و نوع گیاه دارد، در آمریکای مرکزی مخلوط ذرت و لوبیا و کدو یک الگوی کشت است. که از سالیان دراز رواج داشته است. این نوع مخلوط از حدود نهصد تا هزار و پانصد سال قبل از میلاد مسیح در مکزیک مرسوم بوده و مجموعه لوبیا، ذرت و کدو به اندازه‌ای موفق بوده که غیر از زادگاه خود (مکزیک) در کشورهای دیگر نیز، استقبال روبرو شده است.

فصل اول
1ـ مقدمه1
2ـ تاریخچه کشت مخلوط در جهان و ایران 2
فصل دوم
3ـ مزایای کشت مخلوط 4
4ـ معایب کشت مخلوط12
5ـ روش‌های ارزیابی کشت مخلوط17
6ـ عوامل زراعی و محیطی در کشت مخلوط23
7ـ مشخصات گیاهشناسی ذرت27
8ـ اکولوژی ذرت32
9ـ عملیات زراعی ذرت34
10ـ مشخصات گیاهی سویا36
11ـ اکولوژی سویا42
12ـ عملیات زراعی43
13ـ آبیاری سویا47
14ـ تثبیت ازت در سویا48
فصل سوم
15ـ مواد و روش‌ها52
16ـ تحقیقات به عمل آمده در مورد کشت سویا و ذرت علوفه‌ای59
17ـ تأثیر کود ازت در کشت مخلوط سویا و ذرت60
18- اثر میزان ازت تولیدی توسط سویا در کشت مخلوط سویا و ذرت علوفه‌ای 64
 

 

شامل 75 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه بررسی راندمان تولید علوفه در کشت مخلوط سویا و ذرت علوفه‌ای