فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق شبکه ها و تطابق در گراف

اختصاصی از فی ژوو تحقیق شبکه ها و تطابق در گراف دانلود با لینک مستقیم و پر سرعت .

تحقیق شبکه ها و تطابق در گراف


تحقیق شبکه ها و تطابق در گراف

ریاضی

دسته بندی :  علوم پایه _ ریاضی

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ ) 

حجم فایل:  (در قسمت پایین صفحه درج شده )

تعداد صفحات فایل: 42

کد محصول : 0917

فروشگاه کتاب : مرجع فایل 


 

 قسمتی از محتوای متن 

فهرست مطالب

 

عنوان

صفحه

مقدمه

 

فصل 1

 

شبکه ها

 

1-1 شارش ها

 

1-2 برش ها

 

1-3 قضیه شارش ماکزیمم – برش مینیمم

 

1-4 قضیه منجر

 

 

 

فصل 2

 

تطابق ها

 

2-1 انطباق ها

 

2-2 تطابق ها و پوشش ها در گراف های دو بخش

 

2-3 تطابق کامل

 

2-4 مسأله تخصبص شغل

 

 

 

منابع

 

 

  • شارش ها

 

شبکه های حمل و نقل، واسطه‌هایی برای فرستادن کالاها از مراکز تولید به فروشگاهها هستند. این شبکه ها را می‌توان به صورت یک گراف جهت دار با یک سری ساختارهای اضافی درنظر گرفت و آن ها را به صورت کارآیی مورد تحلیل و بررسی قرار داد. این گونه گراف های جهت دار، نظریه ای را به وجود آورده اند که موضوع مورد بحث ما در این فصل می باشد. این نظریه ابعاد وسیعی از کاربردها را دربرمی‌گیرد.

  • برش ها

تعریف 1-4 اگر یک شبکهء حمل و نقل و C یک مجموعة برشی برای گراف بیسوی وابسته به N به صورت که در آن باشد، C را یک برش یا یک برش a-z می نامند هرگاه حذف کمانهای C از شبکة مفروض به جدایی a و z منتهی شود.

تعریف 1-5 برش C در N، یک برش مینیمم است، اگر هیچ برش دیگری مانند در N با شرط وجود نداشته باشد.

اگر یک شارش ماکزیمم و یک برش مینیمم به عنوان حالت خاصی از قضیه 1-1 داریم:   (1-4)          

نتیجه 1-1 فرض کنید f یک شارش و C یک برش باشد، به طوری که در این صورت f یک شارش ماکزیمم و C یک برش مینیمم است.

 

-3 قضیه شارش ماکزیمم – برش مینیمم

 

در این بخش الگوریتمی برای تعیین یک شارش ماکزیمم در شبکه ها ارائه می‌نمائیم. یکی از اساسی‌ترین ملزومات چنین الگوریتمی این است که در صورت دیدن یک شارش، بتواند تشخیص دهد آیا این شارش ماکزیمم هست یا خیر. بنابراین در شروع کار، نگاهی به این مسأله می‌اندازیم.

 

قضیه 1-3 قضیه شارش ماکزیمم – برش مینیمم. در هر شبکة حمل و نقل ، شارش ماکزیمم که می‌توان در N به دست آورد برابر است با مینیمم ظرفیتهای برشهای این شبکه.

 

 

 

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
/images/spilit.png

« پشتیبانی مرجع فایل »

همچنان شما میتوانید قبل از خرید، با پشتیبانی فروشگاه در ارتباط باشید، یا فایل مورد نظرخود را  با تخفیف اخذ نمایید.

ایمیل :  Marjafile.ir@gmail.com 

 پشتیبانی فروشگاه :  پشتیبانی مرجع فایل دات آی آر 

پشتیبانی تلگرام  و خرید

پشتیبانی ربات فروشگاه : 

به زودی ...

  • /images/spilit.png 
 

دانلود با لینک مستقیم


تحقیق شبکه ها و تطابق در گراف

دانلود پاورپوینت ریاضی گسسته پیش دانشگاهی ریاضی - مقدمات گراف - 37 اسلاید قابل ویرایش

اختصاصی از فی ژوو دانلود پاورپوینت ریاضی گسسته پیش دانشگاهی ریاضی - مقدمات گراف - 37 اسلاید قابل ویرایش دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضی گسسته پیش دانشگاهی ریاضی - مقدمات گراف - 37 اسلاید قابل ویرایش


دانلود پاورپوینت ریاضی گسسته پیش دانشگاهی ریاضی - مقدمات گراف  - 37 اسلاید قابل ویرایش

 

 

 

 

اولین مقاله درباره نظریه گراف توسط اویلر در سال 1732 تحت عنوان مساله پل های کوئینز برگ مطرح  شد گراف ها را در حل بسیاری از مسائل از قبیل طراحی مدارهای مختلف ترافیکی ،

الکتریکی و...برای ساده کردن مسائل بسیار کاربرد دارد.

"مناسب برای دبیران، دانش آموزان و اولیاء"

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضی گسسته پیش دانشگاهی ریاضی - مقدمات گراف - 37 اسلاید قابل ویرایش

دانلود تحقیق کاربرد گراف درهوش مصنوعی

اختصاصی از فی ژوو دانلود تحقیق کاربرد گراف درهوش مصنوعی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کاربرد گراف درهوش مصنوعی


دانلود تحقیق کاربرد گراف درهوش مصنوعی

مقدمه:

نظریه گراف شاخه ای از ریاضیات است که درباره ی اشیاء خاصی درریاضی به نام گراف بحث می کند. به صورت شهودی گراف نمودار یا دیاگرافی است شامل تعدادی راس که با یالهایی به هم متصل شده اند. تعریف دقیق تر گراف به این صورت است که گراف مجموعه ای از راس هاست که توسط خانواده ای از زوج های مرتب که همان یالهاست به هم مرتبط شده اند. یالها بر دو نوع ساده و جهت دار هستند که هر کدام در جای خود کاربرد بسیاری دارد. مثلا اگر صرفا اتصال دو نقطه مانند اتصال تهران و زنجان با کمک آزاد راه مد نظر شما باشد کافیست آن دو شهر را با دو نقطه نمایش داده و اتوبان مزبور را یالی ساده نمایش دهید. اما اگر بین دو شهر جاده ای یکطرفه وجود داشته باشد آنگاه لازمست تا شما با قرار دادن یالی جهت دار مسیر حرکت را در آن جاده مشخص کنید.
آغاز نظریه ی گراف به سده ی هجدهم بر می گردد. اویلر ریاضیدان بزرگ مفهوم گراف را برای حل مسئله ی پل های کونیگسربگ ابداع کرد، اما رشد و پویایی این نظریه عمدتا مربوط به نیم سده ی اخیر و با رشد علم داده ورزی (انفورماتیک) بوده است. مهمترین کاربرد گراف مدل سازی پدیده های گوناگون و بررسی بر روی آنهاست. با گراف می توان به راحتی یک نقشه بسیار بزرگ یا شبکه ای عظیم را درون یک ماتریس به نام ماتریس وقوع گراف ذخیره کرد و یا الگوریتم های مناسب مانند الگوریتم دایسترا یا الگوریتم کروسکال و.... را برروی آن اعمال نمود.
نظریه ی گراف یکی از پرکاربرد ترین نظریه ها در شاخه های مختلف علوم مهندسی (مانند عمران)، باستانشناسی (کشف محدوده ی یک تمدن) و هوش مصنوعی و.... است.
من در این تحقیق کاربرد گراف را در هوش مصنوعی که علم روز می باشد برگزیدم.

نظریهٔ مجموعه‌ها
شالودهٔ بنیادین و سنگ اساسی بنای ریاضیات جدید است. تعریف‌های دقیق جمیع مفاهیم ریاضی، مبتنی بر نظریه مجموعه‌هاست. گذشته از این روشهای استنتاج ریاضی، با استفاده از ترکیبی از استدلالهای منطقی و مجموعه- نظری تنظیم شده‌اند. زبان نظریه مجموعه‌ها، زبان مشترکی است که ریاضیدانان منطقی در سراسر دنیا با آن صحبت کرده و آن را درک می‌کنند. چنان که اگر کسی بخواهد پیشرفتی در ریاضیات عالی یا کاربردهای عملی آن داشته باشد، باید مفاهیم اساسی و نتایج نظریه مجموعه‌ها و زبانی که در آن بیان شده‌اند، آشنا شود.
تاریخچه
نظریه مجموعه‌ها در اواخر قرن نوزدهم به طور عمده توسط جرج کانتور بنیان گذاشته شد. زمانی که کانتور مفاهیم و استدلالهای جدید و متهورانه خود را منتشر کرد، اهمیت آنها تنها توسط تعداد کمی از ریاضیدانان بزرگ درک شد. اما این نظریه در توسعه بعدی‌اش، تقریباً در تمام شاخه‌های ریاضیات نفوذ کرد و تأثیری عمیق بر گسترش آنها داشت. بطوری که حتی باعث تغییر نظریه‌های تثبیت شده گردید و ریاضیدانان سعی کردند مفاهیم ریاضی را بر اساس نظریه مجموعه‌ها تعریف کنند. به عنوان مثال می‌توان از تعریف اعداد طبیعی توسط پئانو اشاره کرد. همچنین توسعه بعضی از نظامهای ریاضی، از قبیل توپولوژی، اساساً به ابزار نظریه مجموعه‌ها وابسته است. از اینها مهم‌تر، نظریه مجموعه‌ها نیرویی متحد کننده بدست داد که به تمام شاخه‌های ریاضیات مبنای مشترک و مفاهیم آنها،وضوح ودقتی تازه بخشیده است.
هنگامی که می‌خواهیم با مجموعه‌ای آشنا شویم می‌توانیم آنها را به سه صورت مورد بررسی قرار دهیم. مطالعه مجموعه‌ها به طور کلی نیاز به آشنایی عمومی با آنها دارد که هر کس که می‌خواهد علوم پایه را مورد مطالعه قرار دهد باید این آشنایی را کسب کند، مطالعه مجموعه‌ها به طور طبیعی و مطالعه مجموعه‌ها به صورت اصل موضوعی. در نظریه مجموعه‌ها دو واژه طبیعی و اصل موضوعی دو واژه متضاد هم می‌باشند.
نظریه طبیعی مجموعه‌ها
مطالعه مجموعه‌ها به صورتی طبیعی به عنوان نظریه طبیعی مجموعه‌ها یا Naive set theory است و این همان نظریه‌ای است که در آغاز پیدایش نظریه مجموعه‌ها توسط جرج کانتور مطرح گردید. اما در ادامه این نظریه درگیر اشکالات و پارادکس‌هایی همچون پارادکس راسل شد، و به این ترتیب نیاز به یک تغییر در نظریه مجموعه ها احساس شد و به این ترتیب ریاضیدانانی چون ارنست زرملو سعی کردند نظریه مجموعه‌ها را در قالب یک دستگاه اصل موضوعی ارایه کنند که منجر به ایجاد نظریه اصل موضوعی مجموعه‌ها انجامید.

 

 

شامل 44 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق کاربرد گراف درهوش مصنوعی

تحقیق در مورد ترکیبات و نظریه‌ی گراف

اختصاصی از فی ژوو تحقیق در مورد ترکیبات و نظریه‌ی گراف دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ترکیبات و نظریه‌ی گراف


تحقیق در مورد ترکیبات و نظریه‌ی گراف

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه27

در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریه‌ی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم .

این دو مبحث بدلیل آنکه دارای کاربرد وسیعی در علم کامپیوتر و برنامه سازی های کامپیوتری می‌باشند حائز اهمیت فراوان می باشند .

1-ترکیبات :

شاید در نگاه اول ترکیبات یک بخش معماگونه و سطحی از ریاضیات به نظر برسد که دارای کاربرد چندانی نبوده و فقط مفهوم های انتزاعی را معرفی می کند ولی این شاخه از ریاضیات دارای گستره‌ی وسیع بوده و دارای شاخه های زیادی نیز می باشد .

ابتدا به مسأله ای زیبا از ترکیبات برای آشنا شدن بیشتر با این مبحث ارائه می کنیم .

سوال : یک اتاقی مشبک شده به طول 8 و عرض 8 داریم که خانه‌ی بالا سمت چپ و خانه‌ی پایین سمت راست‌ آن حذف شده است (مانند شکل زیر)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

حال ما دو نوع موزاییک داریم . یکی 2*1 (     )  و دیگری 1×2 (       ) سوال این است که آیا می توان این اتاق را با این دو نوع موزائیک فرش کرد .

احتمالاً اگر شخص آشنایی با ترکیبات نداشته باشد می گوید «آری» و سعی می کند با کوشش و

خطا اتاق را فرش کند ولی این کار شدنی نیست ؟! و اثبات جالبی نیز دارد .

اثبات : جدول را بصورت شطرنجی رنگ می کنیم مانند شکل زیر :

حال با کمی دقت متوجه می شویم که هر موزائیک یک خانه از خانه های سیاه و یک خانه از خانه‌های سفید را می پوشاند یعنی اگر قرار باشد که بتوان با استفاده از این موزائیک ها جدول پوشانده شود باید تعداد خانه های سیاه با تعداد خانه های سفید برابر باشد ولی این گونه نیست زیرا تعداد خانه های سفید جدول برابر 32 و تعداد خانه های سیاه برابر 30 می باشد . در نتیجه این کار امکان امکان پذیر نیست .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

این مسأله مربوط به مسائل رنگ آمیزی در ترکیبات بوده که دارای دامنه‌ی وسیعی از مسائل دشوار و پیچیده می باشد در زیر چند نمونه از مسائل آسان و سخت را بیان می کنیم .

1-ثابت‌کنید هیچ جدولی را نمی توان به موزائیک هایی به شکل             و             پوشاند .

(راهنمایی: ثابت کنید حتی سطر اول جدول را هم نمی توان پوشاند)

2-ثابت کنید یک مهره‌ی اسب نمی تواند از یک خانه‌ی دلخواه صفحه‌ی n*4 شروع به حرکت کند و تمام خانه ها را طی کند .

3-یک شبکه‌ی n*m از نقاط داریم یک مسیر فراگیر مسیری است که از خانه‌ی بالا سمت چپ

شروع به حرکت کرده و از همه‌ی خانه هر کدام دقیقاً یک بار عبور کند و به خانه‌ی سمت راست پایین برود ثابت کنید شرط لازم و کافی برای وجود یک مسیر فراگیر در شبکه‌ی n*m آن است که لااقل یکی از m یا n فرد باشد (مرحله‌ی دوم المپیاد کامپیوتر ایران) در شکل زیر یک مسیر فراگیر را برای جدول 5*4 می بینیم .


دانلود با لینک مستقیم


تحقیق در مورد ترکیبات و نظریه‌ی گراف

پاورپوینت نظریه زبانها و ماشینها227ص

اختصاصی از فی ژوو پاورپوینت نظریه زبانها و ماشینها227ص دانلود با لینک مستقیم و پر سرعت .

پاورپوینت نظریه زبانها و ماشینها227ص


پاورپوینت نظریه زبانها و ماشینها227ص
nمفاهیم نمادگذاری
nضرورت نیاز به زبانهای سطح بالا
nضرورت ترجمه برنامه های نوشته شده با زبان سطح بالا به برنامه به زبان ماشین
nتنوع زبانهای برنامه نویسی سطح بالا
و مفهوم تابع
n نظریه مجموعه ها
n مفهوم استقراء ریاضی
n گراف و انواع آن
پاورپوینت 227 ص
 

دانلود با لینک مستقیم


پاورپوینت نظریه زبانها و ماشینها227ص