فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق مفاهیم بقا

اختصاصی از فی ژوو دانلود تحقیق مفاهیم بقا دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق مفاهیم بقا


دانلود تحقیق مفاهیم بقا

  مقدمه ای در مفاهیم بقا:

در این بخش پارامترهای اصلی را که در مدل داده های بقا به کار می روند بررسی می کنیم.

فرض کنید زمانی تا بعضی پیشامدهای معین مانند مرگ، ظاهر شدن تومور، پیشرفت یک بیماری، برگشت بیماری،  فرسودگی تجهیزات، توقف استعمال دخانیات، و غیره باشد.

با دقت بیشتری یک متغیر تصادفی نامنفی از یک جامعه همپراش[1] است.  توزیع  را می توان توسط 4 تابعی که در زیر معرفی می کنیم، مشخص کرد.

  • تابع بقا[2] ، احتمال این است که فردی بعد از زمان زنده بماند.
  • تابع نسبت بخت[3] ، شانس فردی در سن است که پیشامدی را در لحظه بعدی تجربه کند.
  • تابع چگالی احتمال[4] (یا جرم احتمال)، احتمال غیرشرطی از رخ دادن پیشامدی در زماناست.
  • میانگین طول عمر باقیمانده[5] در زمان، میانگین زمان تا پیشامد مطلوب است، به شرطی که پیشامد دررخ نداده باشد(که در اینجا مورد بحث قرار نمی گیرد).

اگر هر یک از این توابع مشخص باشند، سه تای دیگر به طور یکتا تعیین می شوند. در عمل این 4 تابع، همراه تابع بخت تجمعی[6] برای تشریح مفاهیم مختلف توزیع  به کار می روند.

تعریف 1-1-1 (تابع بقا)   کمیت اصلی که برای توصیف پدیده های زمان تا پیشامد[7] بکار می رود تابع بقا است . احتمال این که فردی بعد زمان  زنده بماند (تجربه پیشامد بعد زمان ) ، که به صورت زیر تعریف می شود

توجه کنید که تابع بقا، تابعی غیر صعودی با مقدار یک در مبدأ و صفر در بینهایت است. اگر  متغیر تصادفی پیوسته باشد، پس  تابعی پیوسته و اکیداً نزولی است.

وقتی  متغیر تصادفی است، تابع بقا متمم تابع توزیع تجمعی است، یعنی که . همچنین تابع بقا انتگرال تابع چگالی احتمال  است، یعنی

بنابراین

وقتی  متغیر تصادفی گسسته است به تکنیکهای مختلفی نیاز داریم. متغیرهای تصادفی گسسته در تحلیلهای بقا بواسطه گردکردن اندازه ها، طبقه بندی زمانهای شکست به فاصله ها و یا زمانی که طول عمرها به تعداد درستی از واحدها ارجاع شوند، بوجود می آیند. فرض کنید که مقادیر ، را با تابع جرم احتمال  بگیرد، که  ، تابع بقا برای متغیر تصادفی گسسته  به صورت زیر داده می شود

تعریف 1-1-2 (تابع بخت) نسبت بخت به صورت زیر تعریف می شود

اگر  متغیر تصادفی پیوسته باشد، پس

یک کمیت نسبی، تابع بخت تجمعی،  است که به صورت زیر تعریف می شود

بنابراین برای طول عمرهای پیوسته

1-2     خلاصه ای از مقدمات

بعضی از تعاریف و لم هایی که در بخشهای بعد مورد استفاده قرار می گیرند در زیر بیان می داریم.

تعریف 1-2-1 (محکم بودن[8])   خانواده های  روی مجموعه اندیس  ی مفروض محکم است اگر برای هر ، فاصله متناهی وجود داشته باشد به طوری که

لم 1-2-1 (لم اسلاتسکی[9])   اگر ،، هر سه در توزیع، که  و ثابت هستند.آنگاه  در توزیع.

تعریف 1-2-2 (تابع کدلاگ[10])   فرض کنید  فضای توابع حقیقی  روی  باشد که از راست پیوسته اند و حد چپ دارند یعنی

  • برای ،  وجود داشته باشد و
  • برای ،  وجود داشته باشد

توابعی که این خاصیت را دارند توابع کدلاگ نامیده می شوند. گوییم تابع  در  ناپیوستگی نوع اول دارد اگر  و  وجود داشته اما متفاوت باشند و  بین آنها قرار گیرد. نا پیوستگی های تابع کدلاگ از نوع اول می باشند.

تعریف 1-2-3 (عملگر خطی)   فرض کنید  و  دو فضای خطی روی  باشند. تابع  را یک عملگر خطی[11] از به  گوئیم هرگاه به ازای هر  و هر  داشته باشیم

باید توجه داشت برای اینکه رابطه بالا معنی دار باشد، بایستی  و دارای یک میدان باشند یعنی میدان هر دوی آنها  یا  باشد.

قضیه 1-2-1 (قضیه نگاشت پیوستگی[12])   اگر دنباله  در احتمال به  همگرا باشد و  تابعی پیوسته در   باشد آنگاه  در احتمال به  همگراست.

1-3     روش دلتا[13]

نتایج مهم و مثالها

فرض کنید  برآوردگری برای  باشد که موجود است، اما کمیت مورد نظر برای تابع معلوم  است. یک برآوردگر طبیعی  است. حال خاصیتهای مجانبی  چگونه از خاصیتهای مجانبی  پیروی می‌کنند؟ اولین نتیجه، نتیجه فوری از قضیه نگاشت پیوستگی است. اگر دنباله  در احتمال به  همگرا باشد و  در  پیوسته باشد، پس  در احتمال به  همگراست. اما علاقه اصلی ما، سوأل مشابهی در ارتباط با توزیع‌های حدی است. در حالت خاص، اگر  همگرای ضعیف به یک توزیع حدی باشد، آیا این برای  نیز درست است؟ اگر  مشخص باشد، پس جواب مثبت است. به طور غیر معمول داریم

که  مشتق  در  است. اگر برای متغیر ، ، پس انتظار داریم که

در حالت خاص اگر  به طور مجانی  باشد، پس انتظارداریم که  به طور مجانبی  باشد، این در اصول کلی‌ترین در قضیه زیر ثابت می‌شود.

در پاراگراف قبلی،  حقیقی- مقدار است، اما بیشتر بررسی آماره  مورد نظر است که از چندین آماره اصلی ساخته شده است. بنابراین حالتی که  برداری مقدار است را بررسی می‌کنیم که  تابع داده‌ شده ای است که حداقل در همسایگی  تعریف شده باشد. یادآوری می‌کنیم که  در مشخص است اگر نگاشت خطی  وجود داشته باشد به طوری که

همه عبارت‌ها در این معادله برداری‌هایی به طول هستند، و  نرم اقلیدسی است. نگاشت خطی  بعضی اوقات "مشتق کلی" نامیده می‌شود، چون نقطه مقابل مشتقات جزئی. شرط کافی برای مشخص بودن  این است که مشتقات جزئی  در همسایگی  وجود داشته و در پیوسته باشند (فقط وجود مشتقات جزئی کافی نیست). در هر حالتی، مشتق کلی از مشتقات جزئی پیدا می‌شود .

اگر  مشخص باشد، آن گاه به طور جزئی مشخص است، و نگاشت مشتق  ماتریس چندگانه‌ای به صورت زیر است

اگر وابستگی مشتق  روی  پیوسته باشد. آنگاه  مشخص پیوسته نامیده می‌شود.

بهتر است فکر کنیم مانند نزدیکی خطی  به تابع  است، نسبت به مجموعه از مشتقات جزئی. بنابراین مشتق در نقطه ، نگاشتی خطی است. اگر فضای برد  خط حقیقی باشد. (که مشتق برداری افقی است)، پس مشتق، تا نژانت تابع نیز نامیده می‌شود.

توجه :

مشتق در یک نقطه معمولاً به صورت  نوشته می‌شود که در این جا  است. درحالی که  یک عدد است منظور دوم  مشخص کردن نگاشتی است که به صورت تعریف می‌شود.

بنابراین در اصطلاحات حاضر، تابع مشتق معمول نگاشتی است از IR به توی مجموعه نگاشتهای خطی از ، نه نگاشتی از . به طور ترسیمی، تقریب خوب ، تا نژانت تابع  در  است.

اینجا روش دلتا در ابعاد بالاتری است.

قضیه 1-3-1   فرض کنید نگاشتی اندازه پذیر تعریف شده روی زیر مجموعه‌ای از باشد که در  مشخص است. فرض کنید  بردارهای تصادفی باشند و مقادیری که می‌گیرند در دامنه  باشند.

اگر  برای اعداد  پس

به علاوه تفاوت بین  و  در احتمال به صفر همگراست.

اثبات : وقتی ، بوسیله لم اسلاتسکی داریم

بنابراین  در احتمال به صفر همگراست. تابع  را به صورت زیر تعریف می‌کنیم

با مشخص بودن ،  در صفر پیوسته است. بنابراین به وسیله قضیه نگاشت پیوستگی

از این رو باز بوسیله لم اسلاتسکی و قضیه نگاشت پیوستگی

در نتیجه

چون ماتریس چند گانه پیوسته است، بوسیله قضیه نگاشت پیوستگی  بالاخره با به کار بردن لم اسلاتسکی، نتیجه می‌گیریم که دنباله  حد ضعیف مشابهی دارد.

حالت معمول این است  به یک توزیع نرمال چند متغیره  همگراست. پس نتیجه ای از قضیه این است که دنباله  در قانون به توزیع  همگراست.

مثال 1-3-1)واریانس نمونه)   واریانس نمونه از  مشاهده  به صورت  تعریف می‌شود، و می‌تواند به صورت  برای تابع  نوشته شود )برای سادگی نشان  را به جای  به کار می‌بریم(فرض کنید  بر اساس نمونه‌ای از توزیعی است که گشتاوراول تا چهارم،، متناهی هستند.

بوسیله قضیه حد مرکزی چند متغیره

نگاشت  در نقطه  مشخص است، با مشتق  بنابراین اگر بردار  دارای توزیع نرمال در نمایش آخر باشند، آنگاه

متغییر بعدی به صورت نرمال توزیع شده که میانگین صفر و واریانسی دارد که می‌تواند در  بیان شود.

در حالتی که ، واریانس  است. حالت کلی می تواند به این حالت القا شود، زیرا  تغییر نمی‌کند اگر مشاهدات  با متغیر‌های  مرکزی  جایگزین شوند. برای گشتاور مرکزی  می‌نویسیم  توجه کنید که  و  واریانس مشاهدات اصلی است، بدست می‌آوریم

در نظریه لم اسلاتسکی، نتایج یکسانی برای حالت نااریب  از واریانس نمونه برقرار است . برای اینکه

1-4     فرآیندهای وینر و گوسی مربوطه

1-4-1     اطلاعی از فرآیند وینر

گیاه شناس انگلیسی براون[14] در 1826 مشاهده کرد که ذرات میکروسکوپی معلق در یک مایع تابع تماسهای مولکولی دائمی هستند و حرکات زیگراگی دارند (حرکت براونی[15]). اینستین[16] (1905) کشف کرد که این حرکات می‌توانند بوسیلة قوانین احتمال تحلیل شوند. یکی از ساده‌ترین مدلها برای حرکت براونی یک بعدی می‌تواند بر حسب پرتاب سکه یا مدل گام تصادفی داده شود. فرض کنید ذره‌ای روی خط حقیقی با شروع از مبدأ حرکت کند. در هر واحد زمانی این ذره می‌تواند با احتمال 2/1 یک گام به راست یا یک گام به چپ حرکت کند، فرض کنید ا ین گامها مستقل باشند، به -اُمین گام ذره، می‌گوییم، پس  ،  ، ... متغیرهای تصادفی مستقل هستند با

و بعد از  گام ذره در  قرار دارد. بنابراین مسیرهای بوجود آمدة ،،...وقتی واحد زمانی و گامها به اندازه کافی کوچک باشند کاملاً از حرکت براونی تبعیت می‌کنند.

 در مدل واقعی حرکت بروانی، ذره گامهای آنی را به راست یا چپ طی می‌کند ، یعنی مقیاس زمانی پیوسته به جای گسسته به کار می‌رود، و طولهای ، گامهایی هستند که به جای توزیع بالا به صورت نرمال توزیع شده‌اند.

فهرست مطالب:

  • فصل اول : تعاریف و مفاهیم اولیه                                                              1
  • 1-1 مقدمه ای در مفاهیم بقا                                                           2
  • 1-2 خلاصه ای از مقدمات                                                           5
  • 1-3 روش دلتا ، نتایج مهم و مثالها                                                 6
  • 1-4 فرآیندهای وینر و گوسی مربوطه                                                 11
  • 1-4-1 اطلاعی از فرآیند وینر                                                           11
  • 1-4-2 تعریف و وجود فرآیند وینر                                                 12
  • 1-4-3 پل براونی                                                                    12
  • فصل دوم : سانسور و برش                                                           14
  • 2ـ1 مقدمه                                                                              15
  • 2ـ2 سانسور راست                                                                    17
  • 2-2-1 سانسور نوع یک                                                           17
  • 2-2-2 سانسور پیشروی نوع یک                                                 19
  • 2-2-3 سانسور تعمیم ‌یافته نوع یک                                       21
  • 2-2-4 سانسور نوع دو                                                           23
  • 2-2-5 سانسور پیشروی نوع دو تعمیم                                       24
  • 2-2-6 سانسور تصادفی                                                           24
  • 2-3 سانسور چپ و فاصله‌ای                                                           26
  • 2-3-1 سانسور چپ                                                           26
  • 2-3-2 سانسور فاصله‌ای                                                                    28
  • 2-4 برش                                                                              29
  • برش راست                                                                              29
  • 2-5 ساختار درستنمایی برای داده‌های سانسور شده و داده‌های بریده شده           30
  • نکات عملی                                                                    35
  • نکات تئوری                                                                              35
  • 2-6 برآورد ناپارامتری کمیتهای اصلی برای داده‌های از راست سانسور و بریده شده از چپ 37
  • 2-6-2 برآوردگرهای توابع بقا و بخت تجمعی برای داده‌های از راست سانسور                   38
  • فصل سوم: برآورد ناپارامتری از داده های بقای مقطعی 42
  • 3-1 مقدمه                                                                                        43
  • 3-2 برآورد حد- حاصلضربی در مقابل برآورد واردی                                     51
  • 3-2-1 یک حالت خاص                                                                52
  • 3-2-2 حالت کلی                                                                        54
  • 3-3 برآورد ناپارامتری                                                                        58
  • 3-4 خاصیت های مجانبی                                                             63
  • 3-5 کوواریانس های مجانبی توأم، برآورد ناپارامتری                                  81
  • 3-6 برآورد ناپارامتری                                                                       85
  • 3-6-1 NPMLEی                                                        87
  • 3-6-2 اعتبار                                                                           88
  • 3-6-3 بوت استرپ بدیهی تعمیم یافته                                                         89
  • فصل چهارم : بررسی خواص مجانبی MLE ی تابع بقا درنمونه­گیری در طول- اُریب همراه با سانسور راست : رویکردی غیرشرطی                                                                 92
  • 4-1 مقدمه                                                                                        93
  • 4- 2 مدل های شرطی در مقایسه با مدل­های غیرشرطی                                   96
  • 4-3 علامت­گذاری و موارد مقدماتی                                                                   97
  • 4-4 برآورد و مجانب ها                                                                        100
  • 4-5 کاربرد برای بقای همراه با دمانس                                                        121
  • 4-6 تفسیرهای آخر                                                                                122

شامل 122 صفحه فایل WORD قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق مفاهیم بقا

تحقیق در مورد بررسی خواص مجانبی MLEی تابع بقا

اختصاصی از فی ژوو تحقیق در مورد بررسی خواص مجانبی MLEی تابع بقا دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد بررسی خواص مجانبی MLEی تابع بقا


تحقیق در مورد بررسی خواص مجانبی MLEی تابع بقا

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه36

مشخص است که هنگامی که داده­های بقا از موارد رایج تعیین شده توسط یک پژوهش مقطعی[1]بدست می­آیند، تابع بقا مربوط به این داده­ها در طول- اُریب[2] می­باشد و با تابع بقای بدست آمده از موارد تصادفی تفاوت دارد. داده­های در طول- اُریب در کتب و مقالات چاپ شده هم به صورت بدون شرط و هم به صورت شرطی مورد بحث و بررسی قرار گرفته­اند. در حالت دوم، که در آن جهت طول را القا شده توسط برش چپ تصادفی زمان های بقا قلمداد می­کنند، توزیع برشی مجهول فرض می­شود. بنابراین شرطی­سازی زمان­های برش مشاهده شده باعث اتلاف بسیار اندک اطلاعات می­گردد. هرچند، در بسیاری از موارد، می­توان فرض نمود که توزیع برشی یکنواخت است، و تحت چنین شرایطی می­توان یک آنالیز غیر شرطی را آگاهی­بخش ­تر دانست. در کتب و مقالات منتشر شده تا این لحظه هیچ نتیجه­ای وجود ندارد که ویژگی­های مجانبی برآوردکننده­ی درستنمایی ماکزیمم ناپارامتری غیر شرطی (NPMLE) را برای تابع بقای نااریب در صورت سانسور کردن را بدست بدهد. بخش حاضر این فضای خالی را با ارائه این NPMLE و ویژگی­های مجانبی همراه با آن، هنگامی که داده­های کاملاً در طول- اُریب هستند، پر می­نماید. یک مثال از بقای همراه با دمانس ارائه شده است که در آن برآوردکننده­های شرطی و غیرشرطی با یکدیگر مقایسه گردیده­اند.

 

 

 

4-1     مقدمه

 

 

گروهی از اشخاص را در نظر بگیرید که واقعه­ای (همچون بیماری) را در زمان­های ، و سپس در نقاط پایانی واقعه­ای دیگر را تجربه می­کنند. هدف عمده در اکثر پژوهش­های همه­گیرشناسی تخمین توزیع بازه­ها از آغاز تا پایان و یا مقایسه توزیع­های این زمان­های بقا برای دو یا چند گروه کاملاً معین می­باشد. زمانی که امکان بررسی تمامی افراد در یک جامعه با عطف به آینده وجود دارد، تکنیک­های استانداردی برای آنالیز بقا را می­توان مورد استفاده قرار داد. هرچند، اغلب، مشخص می­شود که افراد آغازگری را توسط یک پژوهش مقطعی در زمان­های ثابتی تجربه می­کنند؛ بنابراین آن­هایی که تا آن زمان باقی مانده­اند، در پژوهش مورد استفاده قرار می­گیرند، در حالی که آن­هایی که چنین شرایطی را نداشته­اند، مشمول این فاز آغازگری نمی­گردند، و در واقع تشخیص داده نمی­شوند. از آنجا به بعد، گروه افراد مورد استفاده قرار گرفته تا نقطه ثابت زمانی بعدی، که مربوط به انتهای پژوهش می­شود، مورد بررسی قرار می­گیرند. مطمئناً، تعدادی از این افراد به دلایل مختلف زمان­های عدم موفقیت، من­جمله بقای خویش تا انتهای پژوهش، را سانسور کرده­اند. فرض می­کنیم که برای هر فرد مورد استفاده قرار گرفته، تاریخی برای آغازگری به ثبت رسیده است. بنابراین، داده­های مربوط به هر فرد شامل تاریخ آغازگری و عدم موفقیت/سانسور (همچنین شاخص­های سانسور)، برای افرادی که مورداستفاده قرار گرفته­اند، می­شود. به خوبی مشخص است که بازه­های زمانی از شروع تا عدم موفقیت/سانسور «در طول- اُریب» هستند، که به این معنا است که آن بازه­های زمانی که در حقیقت مشاهده شده­اند، نسبت به آن­هایی که از عدم موفقیت زیرین حقیقی (توزیع­های سانسور کردن) بدست آمده­اند، طولانی­تر هستند


[1] Cross-sectional

[2] Length-biased

 


دانلود با لینک مستقیم


تحقیق در مورد بررسی خواص مجانبی MLEی تابع بقا

تحقیق در مورد تنازع برای بقا

اختصاصی از فی ژوو تحقیق در مورد تنازع برای بقا دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تنازع برای بقا


تحقیق در مورد تنازع برای بقا

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه21

 

فهرست مطالب

 

مقدمه

اقتصاد دفاع از منابع

تعریف قلمروگرایی:0

محافظت از قلمرو

فصل سوم

جنگ و زورآزمایی

قسمت اعظم پدیده های سازشی، که در موجودات زنده دیده می شود، سازشهائی هستند که در مقابل شرایط بخصوصی از محیط انجام می گیرند. بنابراین عوامل مخصوصی از محیط، تأثیر بسزائی در انتخاب طبیعی دارند. همراه با عوامل
غیر حیاتی محیط (درجه حرارت رطوبت، جریان هوا، مواد شیمیایی، شدت جریان آب و غیره) عوامل حیاتی یعنی تأثیر موجودات زنده بر روی یکدیگر
 (شکاریها، انگل ها و رقیب ها) نیز اهمیت خاصی دارند. قبل از هر چیز مسئله رقابتها امری مهم در تکامل موجودات زنده بوده است که ممکن است بین افراد یک گونه یا افراد گونه های مختلف بوجود آید. رقابت بین افراد گونه های مختلف موقعی پیش می آید که همه آنها همزمان احتیاج به قسمتهای مهم و محدودی از محیط مانند غذا، محل های مخصوص تولید مثل، خواب و محل گذراندن زمستان و غیره داشته باشند. چنین فاکتورهائی که تعدادشان محدود است با افزایش افراد یک اجتماع رو بکاهش گذاشته و بالاخره بحداقل می رسند. بنابراین در اینجا عامل تراکم تودة که تأثیر آن با ازدیاد تراکم شدت می یابد بحدی خواهد رسید که از آن پس امکان افزایش تراکم جمعیت را محدود می سازد (مثلاً موقعیکه محل خالی برای تخم گذاری دیگر وجود نداشته باشد).

در این صورت این فاکتور (کمبود محل تخم گذاری) به عنوان فاکتور محدود کننده تراکم توده مؤثر واقع می شود. البته در برابر آنها عواملی نیز وجود دارند، که بستگی به تراکم توده ندارند، مثلاً زمستان سخت طوفان وامثال آنها که باعث کاهش تراکم توده می گردند. دوگونه، که در بسیاری از موارد اساسی با یکدیگر رقابت
می کنند نمی توانند در کنار یکدیگر در محیط زندگی بخصوصی زیست نمایند، زیرا بهر حال یکی از دوگونه


دانلود با لینک مستقیم


تحقیق در مورد تنازع برای بقا

دانلود پایان نامه مفاهیم بقا

اختصاصی از فی ژوو دانلود پایان نامه مفاهیم بقا دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه مفاهیم بقا


دانلود پایان نامه مفاهیم بقا

1     مقدمه ای در مفاهیم بقا
در این بخش پارامترهای اصلی را که در مدل داده های بقا به کار می روند بررسی می کنیم.
فرض کنید  زمانی تا بعضی پیشامدهای معین مانند مرگ، ظاهر شدن تومور، پیشرفت یک بیماری، برگشت بیماری،  فرسودگی تجهیزات، توقف استعمال دخانیات، و غیره باشد.
با دقت بیشتری  یک متغیر تصادفی نامنفی از یک جامعه همپراش  است.  توزیع   را می توان توسط 4 تابعی که در زیر معرفی می کنیم، مشخص کرد.
1)    تابع بقا  ، احتمال این است که فردی بعد از زمان   زنده بماند.
2)    تابع نسبت بخت  ، شانس فردی در سن   است که پیشامدی را در لحظه بعدی تجربه کند.
3)    تابع چگالی احتمال  (یا جرم احتمال)، احتمال غیرشرطی از رخ دادن پیشامدی در زمان  است.
4)    میانگین طول عمر باقیمانده  در زمان ، میانگین زمان تا پیشامد مطلوب است، به شرطی که پیشامد در  رخ نداده باشد(که در اینجا مورد بحث قرار نمی گیرد).
اگر هر یک از این توابع مشخص باشند، سه تای دیگر به طور یکتا تعیین می شوند. در عمل این 4 تابع، همراه تابع بخت تجمعی  برای تشریح مفاهیم مختلف توزیع   به کار می روند.
تعریف 1-1-1 (تابع بقا)   کمیت اصلی که برای توصیف پدیده های زمان تا پیشامد  بکار می رود تابع بقا است . احتمال این که فردی بعد زمان   زنده بماند (تجربه پیشامد بعد زمان  ) ، که به صورت زیر تعریف می شود

  فصل اول : تعاریف و مفاهیم اولیه   1
1-1 مقدمه ای در مفاهیم بقا2
1-2 خلاصه ای از مقدمات5
1-3 روش دلتا ، نتایج مهم و مثالها 6
1-4 فرآیندهای وینر و گوسی مربوطه11
1-4-1 اطلاعی از فرآیند وینر11
1-4-2 تعریف و وجود فرآیند وینر12
1-4-3 پل براونی12
  فصل دوم : سانسور و برش14
2ـ1 مقدمه15
2ـ2 سانسور راست17
2-2-1 سانسور نوع یک17
2-2-2 سانسور پیشروی نوع یک 19
2-2-3 سانسور تعمیم ‌یافته نوع یک 21
2-2-4 سانسور نوع دو23
2-2-5 سانسور پیشروی نوع دو تعمیم24
2-2-6 سانسور تصادفی24
2-3 سانسور چپ و فاصله‌ای 26
2-3-1 سانسور چپ26
2-3-2 سانسور فاصله‌ای  28
2-4 برش 29
برش راست29
2-5 ساختار درستنمایی برای داده‌های سانسور شده و داده‌های بریده شده30
نکات عملی35
نکات تئوری35
2-6 برآورد ناپارامتری کمیتهای اصلی برای داده‌های از راست سانسور و بریده شده از چپ 37
2-6-2  برآوردگرهای توابع بقا و بخت تجمعی برای داده‌های از راست سانسور38
 فصل سوم: برآورد ناپارامتری از داده های بقای مقطعی42
3-1     مقدمه 43
3-2     برآورد حد- حاصلضربی در مقابل برآورد واردی 51
3-2-1     یک حالت خاص52
3-2-2     حالت کلی 54
3-3     برآورد ناپارامتری  58
3-4     خاصیت های مجانبی  63
3-5     کوواریانس های مجانبی توأم، برآورد ناپارامتری   81
3-6     برآورد ناپارامتری  85
3-6-1     NPMLEی  87
3-6-2    اعتبار  88
3-6-3     بوت استرپ بدیهی تعمیم یافته 89
 فصل چهارم : بررسی خواص مجانبی   MLE ی تابع بقا درنمونه¬گیری در طول- اُریب همراه با سانسور راست : رویکردی غیرشرطی92
4-1     مقدمه93
4- 2     مدل های شرطی در مقایسه با مدل¬های غیرشرطی96
4-3     علامت¬گذاری و موارد مقدماتی97
4-4     برآورد و مجانب ها100
4-5     کاربرد برای بقای همراه با دمانس121
4-6    تفسیرهای آخر122
 کتابنامه123


دانلود با لینک مستقیم


دانلود پایان نامه مفاهیم بقا