فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

اختصاصی از فی ژوو تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه


تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه6

 

 

 

 

مرحله اول در مفصل ران در هنگام پایین آمدن

نام عضله

نوع حرکت

نوع انقباض

سرینی بزرگ

کمی فلکشن

اکسنتریک

دو سررانی

کمی فلکشن

اکسنتریک

نیم و تری

کمی فلکشن

اکسنتریک

نیم غشایی

کمی فلکشن

اکسنتریک

 

 

 

 

 

 

 

مرحله اول در مفصل زانو در هنگام پایین آمدن

نام عضله

نوع حرکت

نوع انقباض

چهار سر ران

فلکشن

اکسنتریک

 

 

 

 

 

 

 

 

 

مرحله اول عضلات ساق پا و انگشتان در هنگام پایین آمدن

نام عضله

نوع حرکت

نوع انقباض

دو قلو

پلنتار فلکشن

اکسنتریک

نعلی

پلنتار فلکشن

اکسنتریک

نازک نی بلند

پلنتار فلکشن

اکسنتریک

ساقی خلفی

پلنتار فلکشن

اکسنتریک

نازک نی کوتاه

پلنتار فلکشن

اکسنتریک

تاکننده بلند انگشتان

پلنتار فلکشن

اکسنتریک

تاکننده بلند انگشتان شست

پلنتار فلکشن

اکسنتریک

 

 

 

 

 

 

مرحله دوم – ران در هنگام بالا آمدن

نام عضله

نوع حرکت

نوع انقباض

سرینی بزرگ

اکستنشن

کانسنتریک

گروه همسترینگ

اکستنشن

کانسنتریک

 

 

 

 

مرحله دوم - در هنگام بالا آمدن (عضلات زانو)

نام عضله

نوع حرکت

نوع انقباض

چهار سر رانی

اکستنشن

کانسنتریک

 

 


دانلود با لینک مستقیم


تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند

اختصاصی از فی ژوو دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند


دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند

دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند در 261 صفحه با فرمت ورد و قابل ویرایش بسیار کامل و جامع و به همراه تصاویر و دیاگرام های مرتبط به هر بخش، عالی برای انجام پروژه ها و مقالات رشته عمران شامل بخش های زیر می باشد:

پیشگفتار

فصل دوم:رفتار سازه ها تحت بار زلزله

فلسفه طراحی سازه های مقاوم تحت بار زلزله

رفتار مناسب سازه تحت بارگذاری متناوب

ضریب رفتار سازه ها

فصل سوم:ملاحظات طراحی سازه ها

مقدمه

اهمیت سیستم سازه ای

عوامل موثر در مقاومت سازه

بارگذاری

فصل چهارم:سیستم های سازه ای

مقدمه

سیستم های سازه ای مختلف

قاب خمشی صلب (MRF)

قابهای مهاربندی شده

قاب مهاربندی شده با قاب صلب

قاب با خرپای کمربندی و میانی

قابهای لوله ای

قاب با سیستم خرپای یک در میان (Staggered truss)

سازه های معلق

سازه های پیوندی

پروژه های عملی

قاب مهاربندی شده

قاب با سیستم خرپای کمربندی

قاب های لوله ای

تغییرات قابل ملاحظه در طرح اصلی برای  فراهم کردن مهاربندی

مقایسه اجمالی سیستم های سازه ای

فصل پنجم:قاب های خمشی صلب

کلیات

رفتار قاب صلب

مقاومت افزون در قابهای خمشی

نتیجه گیری

فصل ششم:قابهای  مهاربندی شده

قابهای مهاربندی شده هم مرکز(CBF)

رفتار مهاربندی های هم مرکز

انواع مهاربندی هم مرکز

ملاحظات طراحی مهاربندی های هم مرکز

بهبود رفتار مهاربندی هم مرکز

نتیجه گیری

قابهای مهاربندی شده خارج از مرکز (EBF)

کلیات

رفتار مهاربندی های خارج از مرکز

استهلاک انرژی در قابهای (EBF )خارج از مرکز

طول تیر پیوند درقابهای EBF ومکانیزم آن

اثر سخت کننده ها بر رفتار تیر پیوند

بهبود رفتار مهاربندی خارج از مرکز

نتیجه گیری

مقایسه رفتار سازه های مهاربندی شده هم مرکز با خارج از مرکز

 کلیات

نکاتی در طراحی قابها

بررسی روند تشکیل مفاصل پلاستیک

نتیجه گیری  

تاثیر آرایش مهاربندی ها در رفتار سازه

کلیات

بحث در مورد بررسی های انجام گرفته

نتیجه گیری

تیرپیوند خمشی در قاب های EBF

کلیات

مدل انتخابی برای تحلیل

نتیجه گیری

بادبندهای زانویی

رفتار بادبند زانویی

بررسی عملکرد قاب زانویی (KBF)

بررسی عملکرد قاب زانویی (CKB)

نتایج کلی از بررسی بادبند زانویی

بادبندهای دروازه ای

کلیات

مختصری از عملکرد بادبندهای 8

عملکرد بادبند دروازه ای

کمانش خارج از صفحه

تاثیر موقعیت گره میانی در مقدار بارکمانش خارج از صفحه

ضریب طول موثر اعضای مهاری

کمانش خارج از صفحه در برابر کمانش داخل صفحه

ملاحضات طراحی

نتیجه گیری

فصل هفتم:قاب با سیستم خرپای کمربندی ومیانی

کلیات

فرضیات در نظر گرفته شده در تحلیل

تعیین موقعیت بهینه برای یک خرپای کمربندی

تعیین موقعیت بهینه برای دو خرپای کمربندی

محل خرپای کمربندی برای سازه 30 طبقه

بررسی نتایج تحلیل

نتیجه گیری

نکات پایانی

فصل هشتم:قابهای لوله ای

کلیات

بررسی لنگر برشی در قاب لوله ای

بررسی رفتار سیستم سازه ای لوله در لوله

کلیات

مشخصات سازه های بررسی شده

ارتفاع بهینه قطع لوله داخلی

نتیجه گیری

بررسی سیستمهای مختلف لوله ای تحت بارهای گرانشی وجانبی

کلیات

مدلهای سازه ای برای ساختمان مورد مطالعه

سیستم لوله ساده

سیستم لوله مهاربندی شده

سیستم لوله دسته شده

سیستم لوله در لوله

مقایسه کارایی سیستم سازه ای لوله ای، لوله در لوله وقاب خمشی

بررسی رفتار سیستم ترکیبی قاب لوله ای،هسته مرکزی وکمربند خرپایی

رفتار سازه لوله ای مهاربندی شده

سازه های با کارایی بالا

فصل نهم:انتخاب سیستم سازه ای

مقدمه

سیستمهای مهاربندی متقاطع

سیستمهای لوله ای با ستونهای نزدیک و تیرهای عمیق

سیستم های غیرلوله ای

منابع

به همراه بیش از 50 تصویر و دیاگرام مرتبط به هر بخش

 

پیشگفتار:

زمین لرزه پدیده ای طبیعی است که با شدت های گوناگون ودر نقاط مختلف کره زمین اتفاق می افتد و به دلیل عدم شناخت لایه های زیرین نمی توان زمان وشدت آن را پیش بینی نمود.

گستره زلزله های واقع شده در نقاط مختلف کره زمین، ارتباطی را بین این نقاط نمایان می نماید. امروزه مشخص شده است که اکثر زلزله های دنیا بر روی نوارهایی به نام کمربند زلزله خیزی واقع شده اند.با توجه به تکتونیک صفحه ای موجود، ایران در حال فشرده شدن بین صفحه اروپا،آسیا وصفحه عربستان است. بهترین نشانه این عمل نیز رشته کوه های زاگرس والبرز می باشدکه در فصل مشترک این صفحات واقع شده اند. اکثر زلزله های مهم ایران نیز در حوالی این فصل مشترک ها رخ داده است.

نقشه پهنه بندی لرزه خیزی ایران نشان دهنده این است که هیچ نقطه ای از کشورمان را نمی توان در مقابل اثر زلزله مصون پنداشت.در شکل( 1-1)نقشه پهنه بندی لرزه خیزی ایران طبق آیین نامه 2800 را مشاهده می نمایید.8

بنابراین طراحی وساخت سازه هایی که بطور مناسب بتوانند در مقابل زلزله ها پایدار باشد الزامی است،این موضوع درک وشناخت رفتار سیستم های سازه‌ای را آشکار می سازد.

برای طراحی یک سازه مقاوم در برابر زلزله رکورد شتاب و مشخصات زمین لرزه نیز نیاز می‌باشد، تا اثرات زمین لرزه بر سازه شناسایی گردد اثرات زمین لرزه بر سازه های طراحی شده از موضوعات جالب توجه می‌باشد، زیرا نتیجه آزمایش واقعی روی سازه های طراحی شده براساس آخرین آیین نامه های تدوین شده هستند.

معمولا هر چاپ جدید از آیین نامه ساختمانی بازتابی از نتایج حاصل از آخرین زمین لرزه های ثبت شده و تجزیه وتحلیل آنها می‌باشد.

به طور کلی دو روش برای ساخت سازه ای مقاوم در برابر زلزله موجود است:18

1-سازه صلب

2-سازه نرم

سازه صلب: در اینگونه سازه ها، پارامتر طراحی تغییر شکلهای جانبی سازه تحت اثرات زلزله است بطوریکه سازه به قدری صلب ساخته می شود که کلیه انرژی را جذب می نماید و بایستی با انتخاب اجزا بسیار مقاوم، توانایی جذب انرژی را به سازه داد.

سازه نرم: در اینگونه سازها، پارامتر انعطاف پذیری سازه در برابر حرکات رفت وبرگشتی که ناشی از خاصیت خمیری آن است مورد استفاده قرار می گیرد. بدین صورت که سازه، انرژی را با حرکات نوسانی و درصد میرایی آزاد می‌کند.

 با توجه به مطالب گفته شده تعیین سیستم مقاوم(این سیستم مقاوم شامل ترکیبی از عناصر سازه ای افقی وعناصر مهاربندی عمودی می‌باشد) در برابر نیروهای جانبی یک موضوع اساسی در طراحی سازه ها می باشد، که در اینجا روی سیستم های مهاربندی عمودی بحث خواهد شد.


فصل دوم:رفتار سازه ها تحت بار زلزله


2-1-فلسفه طراحی سازه های مقاوم تحت بار زلزله (13و9)

برای دست یافتن به سازه ای ایمن واقتصادی ،سازه های طراحی شده در نواحی زلزله خیز با خطر نسبی بالا باید دو معیار عمده طراحی را تامین کنند:

الف)باید در برابر زلزله های خفیف که در طول عمر سازه اتفاق می افتد سختی کافی به منظور کنترل تغییر مکان نسبی بین طبقات و جلوگیری از هر گونه خسا رت سازه ای و غیرسازه ای را داشته و در ضمن باید سختی کافی برای انتقال نیروهای زلزله به فونداسیون را دارا باشند

ب) در برابر زلزله های شدید باید شکل پذیری و مقاومت کافی برای جلوگیری از خرابی کامل و فروریزی سازه را داشته باشند.

بنابراین طراحی در برابر زلزله به هیچ وجه به این معنی نمی باشد که در برابر هر زلزله ای سازه اصلا خسارت ندیده ووارد مرحله پلاستیک نشود،بلکه به منظور اقتصادی کردن طرح باید در برابر زلزله های شدید به سازه اجازه داده شود که وارد مرحله غیرخطی شده وبا تغییر شکل های پلاستیک به جذب واستهلاک انرژی پردازد و به همین منظور هم در آیین نامه های تحلیل نیروی زلزله، نیروی بدست آمده از تحلیل طیف الاستیک را به یک ضریب کاهش تقسیم کرده و سازه را برای برش پایه کمتری طرح می کنند.

این فلسفه ایجاب می‌کند که در طراحی سازه های مقاوم در مقابل زلزله به دو مطلب اساسی زیر توجه شود:

الف) ایجاد سختی و مقاومت کافی در سازه جهت کنترل تغییر مکان جانبی، تا از تخریب اعضا سازه ای تحت زلزله های خفیف، جلوگیری به عمل آید.

ب)ایجاد قابلیت شکل پذیری واتلاف انرژی مناسب در سازه تا در یک زلزله شدید از فرو ریزش سازه جلوگیری گردد.

تامین سختی مناسب و بخصوص سختی جانبی سازه از عوامل اساسی طراحی ساختمانها می‌باشد. در حد نهایی مقاومت، تغییر شکل های جانبی باید طریقی محدود گردند که اثرات ثانویه ناشی از بارگذاری قائم  باعث شکست وانهدام سازه نگردند.

در حد بهره برداری ،اولا تغییر شکل ها باید به مقادیری محدود شوند که اعضای غیرسازه ای نظیر درها و آسانسورها، بخوبی عمل نمایند.ثانیا باید برای جلوگیری از ترک خوردگی وافت سختی، از ازدیاد و تشدید تنش در سازه جلوگیری نمود و از توزیع بار بر روی اعضای غیرسازه ای نظیر          میانقابها ونماها خودداری کرد. ثالثا سختی سازه باید در اندازه ای باشدکه حرکتهای دینامیکی آن محدود شده و باعث اختلال ایمنی وآرامش استفاده کنندگان وایجاد مشکل در تاسیسات حساس ساختمان نگردد.

کنترل تغییر مکانهای جانبی ازاهمیت بسیاری برخوردار است. لازم به تاکید است که گرچه برای شاخص جابجایی مقادیری نظیر  پیشنهاد شده واستفاده از آن هم متداول است، ولی این مقدار الزاما شرایط ایمنی وآسایش دینامیکی را تامین نمی کند چنانچه جابجایی سازه بیش از حد باشد میتوان با اعمال تغییراتی در شکل هندسی سازه، افزایش سختی خمشی اعضاء افقی یا سخت ترکردن گره ها و یا حتی با شیب دادن ستونهای خارجی، جابجایی را کاهش داد...

.

.

-7-3-عملکرد بادبند دروازه ای

در شکل (6-30) هندسه نمونه اینگونه بادبندی مشاهده می شود. با ایجاد شکستگی در امتداد میله AC  بادبند 8(شکل 6-29) و تبدیل آن به صورت میله شکسته AFC (شکل 6-30)، فضای وسیع تری جهت تعبیه باز شو ایجاد میشود. موقعیت اتصال اعضای مهاری به یکدیگر (گره های میانی)، فضای بازشوی قاب را تعیین می‌کند. هر چه گره میانی به سمت گوشه قاب حرکت کند از بازشوهای بزرگتری می توان استفاده کرد.

در شکل (6-30) با فرض تامین پایداری کافی در جهت خارج از صفحه و ممتدبودن تیر در نقطه C، خرابی سازه که براساس کمانش میله های فشاری و تشکیل مفصل پلاستیک درنقطه C، متصور است مشاهده میشود. خطوط خط چین، هندسه قبل از اعمال بارجانبی و خطوط توپر، نحوه تغییر شکل قاب تحت اثر بار جانبی اعمال شده به آن را نشان میدهد ]36[.

با فرض اتصالات مفصلی، مسیر انتقال نیروهای محوری در دو نوع بادبند 8 و دروازه ای در شکل (6-31) ملاحظه می شود. نکته جالب در بادبند نوع دروازه ای این است که تحت نیروی جانبی به سمت راست، هر سه میله چپ درفشار و هر سه میله سمت راست در فشار قرار گرفته اند و ستون چپ در کشش وستون سمت راست در کشش واقع شده است، که خلاف انتظار در نگاه اول است. مکانیزم خرابی سازه در صفحه قاب با فرض تامین پایداری کافی در جهت خارج از صفحه با کمانش اعضای فشاری و تشکیل مفصل پلاستیک در وسط تیر حاصل می گردد. این امکان نیز وجود داردکه تحت اثر نیروهای جانبی مهاری های فشاری دچار کمانش خارج از صفحه شده و گره مفصل کننده این مهاری ها به یکدیگر (گره میانی) از صفحه قاب بیرون رود....


دانلود با لینک مستقیم


دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند

تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

اختصاصی از فی ژوو تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه


تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه6

مرحله اول در مفصل ران در هنگام پایین آمدن

نام عضله

نوع حرکت

نوع انقباض

سرینی بزرگ

کمی فلکشن

اکسنتریک

دو سررانی

کمی فلکشن

اکسنتریک

نیم و تری

کمی فلکشن

اکسنتریک

نیم غشایی

کمی فلکشن

اکسنتریک

 

 

 

 

 

 

 

مرحله اول در مفصل زانو در هنگام پایین آمدن

نام عضله

نوع حرکت

نوع انقباض

چهار سر ران

فلکشن

اکسنتریک

 

 

 

 

 


دانلود با لینک مستقیم


تحقیق در مورد تجزیه و تحلیل حرکت پرش عمودی قسمت پایین تنه

تحقیق در مورد طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ

اختصاصی از فی ژوو تحقیق در مورد طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ


تحقیق در مورد طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ

لینک پرداخت و دانلود *پایین مطلب

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:28

 فهرست مطالب

 

طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ

 

1ـ5 مقدمه

 

2ـ5 علم هندسه از مدل

 

3ـ5 مدل عنصری محدود

 

4ـ5 شبیه‌سازی و نتایج تست حقیقی

 

2ـ4ـ5 توانائی اکستروژن معکوس از جریان پولی

 

3ـ4ـ5 تبعیت از جریان مخالف روی مقطع عرضی اکسترود.

 

4ـ4ـ5 نتایج شبیه‌سازی اکستروژن معکوس

 

1ـ4ـ4ـ5 توزیع فشار

 

2ـ4ـ4ـ5 توزیع سرعت

 

4ـ4ـ4ـ5 سرعت برش، ویسکوزیته و توزیع فشار

 

5ـ5 طراحی قالب

 

خلاصه

 

طراحی قسمت مستطیل شکل قالب اکستروژن با 10 سوراخ

 

6-2 هندسه مدل

 

6-3 عامل انتهایی مدل

 

6-4 شبیه‌سازی و نتایج تست موجود

 

6-4-2 توزیع فشار

 

Preland-6-4-1

 

 

هدف از شبیه‌سازی CFD، معین کردن حالت بهینه شکل قالب شامل صفحه قالب و مقطع عرضی پین برای بدست آوردن ابعاد اکسترود خواسته شده از cm1*cm2 از بخش عبوری مستطیلی با یک سوراخ دایره‌ای از cm1/1 ضخامت برای مرکز آن (شکل 1ـ5 را ملاحظه فرمائید. برای بدست آوردن این اکسترود، یک خالی کردن، تقریباً بخش مسطتیلی، قالب برشی با یک انداختن شبیه یک پین در مرکز آن مورد نیاز است. آنالیز عنصر محدود انجام شده یک گردش بولی را بکار می‌گیرد یک کد عنصر محدود CFD تجاری. نتایج بدست آمده براساس اطلاعات مواد و موقعیتهای فرآیند که در قسمت 3 داده شده بنا نهاده شده‌اند.

 

در بخش 2ـ5 علم هندسه مدل ارائه شده است. در بخش 3ـ5 یک توضیح مختصر از مدل عنصر محدود توسعه داده شده برای شبیه‌سازی ارائه شده است. این استنباط شده بوسیله یک بازبینی متصل از نتایج اکستروژن در بخش 4ـ5. این نتایج شامل یک بازبینی از اطلاعات در زمینه تندی برحسب زمان. فشار و دما مانند یک نقشه از سرعت برش و ویسکوزینه پلیمر، همچنین شکلها در بخش 4ـ5 نتایج محاسبات سطوح آزاد و وارونه اکستروژنه هستند. بخش 5ـ5 تشریح می‌کند اجزاء متفاوتی از قالبها و اهدافشان در جریان قالب نقشه چاپی آبی برای قالب طراحی شده در پیوست A داده شده است.
2ـ5 علم هندسه از مدل

 

قالب اکستروژن یک جریان پلیمر زیر فشار از ورودی تا خروجی نگه می‌دارد. ورودی یک دایره است با قطر m055/0 که با بخش عبوری خروج از لوله برابر است. پلیمر از میان بخشهای تناوب و منشعب و اطراف عنکبوتها و از میان تحول قالب دور نهایت از میان سطح قالب جریان می‌یابد (شکل 2ـ5 را ملاحظه فرمائید). لبه قالب یک بخش مسطتیلی انحناءدار بی قاعده با عرض کاسته شده در وسط هست و پین از بخش عبوری شبیه انداخت هست. حتی با وجود آن مقطع عرضی اکسترود و لبه قالب بالانس چهارتایی هستند. (شکل 2ـ5 را ملاحظه فرمائید). بدلیل عنکبوتی پیچیده و ساختار قالب تحول، شبیه‌سازی کردن نیمی از حوزه جریان واقعی لازم بود. شکل (3ـ5 را ملاحظه فرمائید) هر چند تحلیلهای پارامتری می‌تواند باشد و انجام شده باشد خیلی کارآمدتر بوسیله جریان شبیه‌سازی در سطح قالب و یا نواحی زیری قالب فقط با یک ربع از حوزه جریان واقعی بعلت بالانس کردن چهارتایی در آن ناحیه (شکل 4ـ5 را ملاحظه فرمائید). حرکت پولی برای شبیه‌سازی جریان قالب 3 بعدی و انتقال گرما مثل جریان سطح آزاد mm25 پائین رود از انتهای قالب بکار می‌رود (شکل 5ـ5 را ملاحظه فرمائید). حوزه محاسباتی مانند شکل 3 بعدی واقعی قالب و یک جریان سطح آزاد بعد از قالب جائیکه سرعت دوباره توزیع می‌شود و کم شدن فشار در یک پائین رود فاصله کوتاه اتصال از انتهای قالب اتفاق افتاده است. حوزه به چندین زیر حوزه تقسیم شده است برای آسان کردن استفاده از موقعیتهای مرز وابسته (شکل 5ـ5 را ملاحظه فرمائید)


3ـ5 مدل عنصری محدود

 

بعلت هندسه 3 بعدی پیچیده از قالب و رابطة غیر خطی میان ویسکوزیته پلیمر و سرعت برش یک شبکه عنصری محدود وظیفه‌ای و دارای جزئیات توسعه یافته برای آسان کردن ثبات عددی از راه‌حل (شکل 6ـ5 را ملاحظه فرمائید). آن شامل 30872 عنصر با شبکه مکعبی شاختاری در سطح قالب و سطوح آزاد و شبکه چهارضلعی غیرساختاری در بخش باقیمانده. شبکه ساختاری در سطح قالب و سطح آزاد کمتر از 33/0 است. بعد از بوجود آمدن شبکه عنصری محدود در گامبیت، مدل بیرون برد، شده برای اطلاعات پولی جائیکه اطلاعات مواد و وضعیت مرزی مشخص شده است.

 

 


دانلود با لینک مستقیم


تحقیق در مورد طراحی برش عمودی مستطیلی قلب اکستروژن با یک سوراخ

دانلود مقاله تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق

اختصاصی از فی ژوو دانلود مقاله تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق


دانلود مقاله تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق

مقدمه:
مسئله مورد بررسی در این مقاله مربوط است به اینکه تأثیر مکش و تزریق بر روی وزش های گرمایی مخلوط شده در اثر رد و بدل شدن گرما همراه با یک مقدار ثابت چگونه بر روی صفحه انجام می گیرد. این صفحه به صورت عمودی و به سمت بالا پدیدار می شود، با فاصلة کمی از یک سوراخ و در دمایی ثابت نگه داشته می شود که بالاتر از درجة حرارت مایع ambient است.در هر دو مورد متحد و غیر متحد مکش و تزریق این دما ثابت نگه داشته می شود.نتیجه ی گرمای به وجود آمده در این منطقه به وسیله‌ی مطالعه رابطة نیروهای رانشی به وجود آمده در رد و بدل شدن میزان حرارت، نتیجة گرمای به وجود آمده در این منطقه، به وسیله مطالعه رابطة نیروهای رانشی به وجود آمده در رد و بدل شدن میزان با تأثیری که نیروهای جنبشی و رانشی و گرانشی می گذارند مشخص و  مقایسه می شوند.
رد و بدل شدن انرژی حرارتی از یک صفحه ای که به طور دائم حرارت داده شده به یک مایع ساکن دارای چندین مراحل مختلف می باشد. برای مثال غلتک داغ ، آهن یا پلاستیک همتراز. عمل ثبت پایدار، و فیبر شیشه ای و تولید کاغذ، فهمیدن و در نظر گرفتن جریان انرژی حرارتی در منطقة نزدیک به بشقاب در حال حرکت ضروری است تابتوان کیفیت محصول نهایی بدست آمده را مشخص کرد. این موقعیت فیزیکی با جریان رانش گرمایی کلاسیک بر روی یک بشقاب صاف ساکن فرق دارد – زیرا جریان مایع شرکت کننده در این واکنش به سمت سطح در حال حرکت است. Sakiadis اولین کسی بود که متوجه این حرکت برعکس لایة رانشی شد و از یک رابطة خیلی مشابهی استفاده کرد تا راه حل عددی مناسبی برای چگونگی جریان حرارت به صورت ثابت در سطح این منطقه بدست آورد.
از زمانی که Sakiadis این روش معجزه آسا را کشف کرده، تعداد زیادی از دانشمندان و محققان توانسته اند خصوصیات انرژی حرارتی و هیدرودینامیک را تفسیر کنند. Tsou et al گزارش داده است به صورت نمونه ای و تجربی که جریان انرژی گرمایی از این منطقه‌ها به وجود می آورد. حرکت ثابت در این منطقه نشان می‌دهد این حرکت به صورت فیزیکی تحت شرایط آزمایشگاهی قابل تشخیص است هم گسترش دادن سطح این منطقه با سرعت و شتاب و درجه حرارت مختلف. هم چنین در بدست آوردن این نتایج نهایی تحت بررسی قرار گرفته اند. مکش یا تزریق مایع، بر روی سطح برای خنک کردن سطح باعث تغییر فاحش در تأثیر رد و بدل شدن حرارت و میزان آن از بشقاب یا صفحه می شود.
قانون قدرت Velocity و توزیع دما بر روی سطح توسط علی تحت مطالعه قرار گرفته اند. قابل ذکر است که velocity مکش یا تزریق با توجه به بزرگی یا کوچکی صفحه و زمان قدرت قابل تغییر است و در نهایت راه حل های بدست آمده همگی مشابهتهای یکسانی دارند.
بطور کلی، مکش فشردگی سطح و ضریب جابجایی حرارت را بالا می برد در جایی که تزریق کاملاً بر عکس عمل می کند. نیروی رانش که بر اثر اختلاف دما در مایع بوجود آمده می تواند دارای اهمیت بشد. اگر چه velocity سطح متحرک پائین و اختلاف دما بین سطح و مایع مقداری بزرگ باشد چرا که این اختلافات بطور چشمگیری می تواند پراکندگی دما و velocity را تحت تأثیر قرار دهد و این تغییرات باعث تحت تأثیر قرار گرفتن چگونگی رد و بدل شدن میزان گرما از سطح شود. بی توجهی به این تغییرات می تواند باعث بوجود آمدن نتایج غیرواقعی شود.
تأثیرات نیروی رانشی بر روی لایه های رانشی بر روی سطحی که به طور دائم در حال حرکت است و این سطح می توانسته بطور عمودی یا افقی قرار گرفته باشد مورد بررسی قرار گرفته است.
نتایج مطالعات نشان می دهد که : وقتی نیروهای رانشی وجود دارند، نتایج بدست آمده هیچ وجه اشتراکی ندارند به جز برای مورد قانون قدرت برای پراکندگی دما و velocityدر سطح مورد آزمایش.
چن و آرمالی رابطه های بین وزش های گرمایی ادغام شده را مورد مطالعه قرار داده اند. آنها به رابطه های قابل توجهی در مورد ورقه های آویزان افقی یا عمودی در حال حرکت که در دما و حرارت یکسانی قرار گرفته بودند دست یافته اند. نتایج نشان داده که میزان رد و بدل شدن گرما افزایش پیدا می کند وقتی در آزمایش نیروی رانشی استفاده شده و نتیجه عکس گرفته شده وقتی نیروی رانشی استفاده نشده است.
در تمامی گذارشهای قبلی فقط به موقعیت قرارگرفتن لایه های رانشی در محل اتصال سوراخ در صفحه توجه شده بوده است. بنابراین تمام راه حل ها بگونه ای کاملاً مشابه به هم بوده اند.
در صورتیکه چگونگی جریان و جابجایی حرارت اهمیت بالایی دارند. وقتی که بیشترین مقدار بدست آمده برای ضریبهای گرمایی در مجاورت سوراخ روی صفحه بوده است.
با یک تغییر محدود در فرمول رابطه ای که نیروی رانش را محاسبه می کند، تأثیر نیروی رانشی وقتی که صفحه بصورت عمودی و به سمت بالا در حال حرکت بود مهمتر و بالاتر ارزشیابی شده است. برای محاسبات این نتایج به میزان فرسودگی در اطراف سوراخ هم توجه چشمگیری شده است. در مطالعات انجام شده توسط علی و آل صانعی، تأثیرات فرسودگی در دیواره های صفحه و تزریق و مکش در سطح متحرک و همچنین مقدار ضریب جابجایی حرارت و حتی میزان فرسودگی در سوراخ برای بهتر استفاده کردن از رابطه قابل توجه قرار گرفته است. ولیکن تأثیر نیروی رانشی محاسبه نشده و فقط مقدار خالص نیروهای وزش گرمایی در منطقه مورد نظر اندازه گیری شده است. در تمامی این آزمایشات صفحه در حال حرکت دائمی بوده است. در این آزمایشات نیروهای وارد شده در منطقه و مقدار خالص یا مخلوط شدة وزش گرمایی با شماره های Grashof و Reynolds نشان داده شده اند. در مجموع، مطالعات و تحقیقات بر روی وزش های گرمایی مخلوط شده بر روی صفحه مترحک با تزریق یا مکش بسیار کم و نایاب می باشند و فقط به جنبه فیزیکی در قانون قدرت که چگونه با تغییر velocity باعث به وجود آمدن نتایج بسیار مشابهی شده است محدود می شود . و همچنین در آزمایشات انجام شده لایه های رانشی فرسوده فرض شده در نزدیکی سوراخ قابل قبول نیستند. ولیکن مطالعه اخیر، این آزمایشات را ادامه داده و مخلوط کرده تأثیرات نیروی رانشی و خاصیت جابجایی گرما و جریان آن بر روی صفحه ای که بطور دائم در حال حرارت دیدن است و بصورت عمودی آویزان شده است. و حتی تغییرات در اطراف سوراخ و کل صفحه بطور یکنواخت قابل بررسی قرار گرفته است.
نکته قابل توجه دیگر در این آزمایشات بدست آوردن مقدار   می باشد وقتی که بقیه نیروها در حال اندازه گیری هستند. همچنین تعیین مقدار Pr برای مناطق با وزش گرمایی خالص یا مخلوط شده و تعیین مقدار D , B

 

شامل 56 صفحه word


دانلود با لینک مستقیم


دانلود مقاله تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق