فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی ژوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقالهISI آموزش برای توسعه پایدار و محیط زیست اخلاق

اختصاصی از فی ژوو دانلود مقالهISI آموزش برای توسعه پایدار و محیط زیست اخلاق دانلود با لینک مستقیم و پر سرعت .

موضوع فارسی : آموزش برای توسعه پایدار و محیط زیست اخلاق

موضوع انگلیسی : Education for Sustainable Development and Environmental Ethics

تعداد صفحه : 6

فرمت فایل :pdf

سال انتشار : 2015

زبان مقاله : انگلیسی

چکیده

در شرایط بحران جهانی آموزش و پرورش نشان دهنده کارآمد ترین راه تشکیل یک پایه و اساس اجتماعی و فکری برای
اجرای اصول توسعه پایدار و ایده های تکاملی. با توجه به مشکلات مربوط به نصب و استقرار پایدار
توسعه نیاز به آموزش برای توسعه پایدار در حال رشد ادامه می دهد. مقاله ها دولت معاصر
آموزش برای توسعه پایدار (ESD). ESD به عنوان یک راه ساختن هشیاری و رفتار جدید را از طریق در نظر گرفته
که توسعه انسانی البته باید تنظیم شود. یک نقش مثبت اخلاق زیست محیطی در ایجاد و توسعه
ESD نشان داده شده است. تجربه منطقه بایکال در اجرای مفهوم ESD در اصول زیست محیطی
اخلاق در نظر گرفته شده است.

کلمات کلیدی: توسعه پایدار؛ اخلاق زیست محیطی؛ آموزش برای توسعه پایدار؛ منطقه بایکال


دانلود با لینک مستقیم


دانلود مقالهISI آموزش برای توسعه پایدار و محیط زیست اخلاق

دانلود حافظه پایدار

اختصاصی از فی ژوو دانلود حافظه پایدار دانلود با لینک مستقیم و پر سرعت .

دانلود حافظه پایدار


دانلود حافظه پایدار

دسته بندی : فنی و مهندسی_ کامپیوتر و آی تی ، تحقیق

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

به نام خدا حافظه پایدار : حافظه پایدارحتی با از دست دادن قدرت ، مضمون خود را حفظ می کند .
ROM : خواننده حافظه ( ROM ) برنامه ای تلفیق داده شده است که در هنگام تولید حاوی داده های خاص می باشد .
ریزه های ROM حاوی شبکه ای از فتون ها و ردیف ها می باشد .
این ستون ها و ردیف ها همدیگر را قطع می کنند .
اگر مقدار 1 باشد یک دیود ، خطوط را به هم وصل می کند .
اگر مقدار 0 باشد خطوط هرگز به هم وصل نخواهد شد .
ROM چگونه کار می کند .
ROM P : ROM P ، خواننده حافظه ای برنامه ریزی شده و پایداری می باشد که به صورت خالی ساخته شده است .
و بعدها با داده های خاصی پر می گردد .
برنامه نویسی می تواند یک بار انجام گیرد .
پس از برنامه نویسی داده ها همیشه در IC ذخیره می گردند .
ریزه های خالی ROM P به صورت ارزان توسط برنامه ریزان خریداری می گردد .
ROM P ، شبکه های ستونی و ردیفی درست مثل ROM های معمولی دارند .
تفاوت این است که نقاط مشترک ردیف ها و ستون ها در ریزه های ROM P به کمک فیوز به هم وصل می شوند .
شارژی که وارد ستون می شود از فیوز ردیف زمینی عبور می کند و عدد 1 را نشان می دهد ، چون همه سلول ها فیوز دارند ، پس موقعیت اولیه ROM P هم 1 می شود .
برای تغییر این مقدار به 0 ، شما از برنامه ریزی استفاده کنید که جریانی خاص را وارد سلول کند .
ولتاژ بالاتر باعث شکست اتصال بین ستون و ردیف می شود .
این مرحله به سوزاندن ROM P معروف است .
چطور ROM P کار می کند ؟ ROM P : خواندده حافظه قابل برنامه ریزی محو شونده (ROM P ) ریزه های ROM P را راه می اندازد و ROM P ها بارها قابل نوشتن هستند .
دو ترانزیستور بالایه نازکی از اکسید از هم جدا می شوند .
یکی از ترانزیستورها به دروازه شناور و دیگری به دورازه کنترل معروف است .
دروازه شناور در طول دروازه کنترل به ردیف وصل می گردد .
در طول محل اتصال مقدار 1 است .
برای تغییر آن به 0 باید اکسترون های را وارد دروازه شناور نموده .
شارژ الکتریکی از 10 به 13 می رسد .
این شارژ برای دروازه شناور به کار می رود و بیت ها به 0 می رسد .
تمام ورودی های ( دروازه ها ) .
ROM P کاملاً باز هستند ، و به هر سلول مقدار 1 می دهند .
برنامه نویسی ، سلول های مورد نیاز را به 0 می رساند .
برای نوشتن مجدد ROM P ابتدا باید آن را پاک کنید .
پاک کردن ROM P نیازمند ابزاری خاص است که نوار فرابنفش uv به طول موج ( mm 25307 ) از خود ساطع کند .
پاک کننده ROM P ، انتخابی نیست و کا ROM P را پاک خواهد نمود این کار چند دقیقه طول می کشد ( پاک کردن بیش از حد مخرب است ، مراقب این کار باشید ) .
ROM P ها از برنامه ریزی استفاده می کنند که بسته به نوع ROM P از ولتاژ خاصی استفاده کنند .
E

تعداد صفحات : 13 صفحه

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
« پشتیبانی فروشگاه مرجع فایل این امکان را برای شما فراهم میکند تا فایل خود را با خیال راحت و آسوده دانلود نمایید »
/images/spilit.png
 

دانلود با لینک مستقیم


دانلود حافظه پایدار

تحقیق و بررسی در مورد نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار

اختصاصی از فی ژوو تحقیق و بررسی در مورد نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار دانلود با لینک مستقیم و پر سرعت .

تحقیق و بررسی در مورد نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار


تحقیق و بررسی در مورد نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه

 50

برخی از فهرست مطالب

مقدمه

فسفر یک عنصر شیمیایی جدول تناوبی است که نماد آن P و عدد اتمی آن 15 میباشد. فسفر یکی از نافلزات چند ظرفیتی گروه نیتروژن بوده و معمولا در سخره‌ها و کانی های فسفاتی و همچنین در تمام سلولهای زنده یافت میشود ولی هیچگاه به صورت طبیعی تنها و بدون ترکیب با عناصر دیگر وجود ندارد. فسفر بسیار واکنش پذیر بوده و هنگام ترکیب با اکسیژن نور کمی از خود ساتع میکند. از عناصر لازم و حیاتی ارگان های زنده بوده و نامش به شکلهای گوناگون ذکر میشود. مهمترین استفاده فسفر در تولید کود میباشد. همچنین در تولید مواد منفجره کبریت آتش بازی مواد حشره کش خمیر دندان و مواد شوینده و همچنین مانیتورهای کامپیوتر نیز کاربرد دارد.

خصوصیات قابل توجه

فسفر معمولا به شکل یک ماده جامد و موم مانند سفید رنگ است که بوی نامطبوعی دارد. فسفر خالص بی رنگ و شفاف است. اگرچه این نافلز در آب قابل حل نیست ولی در دی سولفید کربن حل میشود. فسفر خالص به سرعت در هوا میسوزد و تبدیل به پنتا اکسید فسفر میشود.

گونه‌ها

فسفر به چهار پنج شکل مختلف وجود دارد. سفید (یا زرد) قرمز سیاه (یا بنفش). که متداول ترین آنها فسفر قرمز و سفید میباشند که که هر دوی آنان از گروه چهار اتمی های چهار وجهی میباشند. فسفر سفید در تماس با هوا میسوزد و در مجاورت با گرما یا نور به فسفر قرمز تبدیل میشود که دو حالت آفا و بتا دارد که با انتقال دمای -3.8 درجه سانتیگراد از هم تفکیک میشوند. در عوض فسفر قرمز پایدار تر بوده و در فشار بخار 1 اتمسفر در 17 درجه سانتیگراد تصعید می شود و از تماس و یا گرمای مالشی میسوزد. فسفر سیاه چندشکلی Allotrope هم در ساختاری مشابه گرافیت که در آن اتمها در یک صفحه شش وجهی چیده شده و هادی جریان الکتریسیته هستند وجود دارد.

کاربردها

اسید فسفریک غلیظ شده که 70% تا 75% P2O))5 دارد. در(( کشاورزی و تولید کود بسیار مهم میباشد. در نیمه دوم قرن بیستم نیاز بیشتر به کودها تولیدات فسفری را به مقدار قابل توجهی افزایش داد.

دیگر کاربردهای فسفر عبارتند از:

• فسفر برای تولید شیشه مخصوص برای لامپهای سودیومی استفاده میشود.

• فسفات کلسیم یا Bone-Ash برای تولید ظروف چینی مرغوب و Mono_calcium Phosphate که در بکینگ پودر مصرف دارد استفاده میشود.

• همچنیند این عنصر در تولید فلزات برنز فسفات و دیگر فلزات استیل کاربرد دارد.

• تری سدیوم فسفات در ماده های تصفیه کننده برای شیرین کردن آب و همچنین جلوگیری از فرسایش لوله‌ها کاربرد دارد.

• از فسفر سفید در ساخت بمبهای آتش زا و دود زا و گلوله های رسام استفاده میشود.

• فسفر کاربردهای گوناگون دیگری در ساخت کبریتهای بی خطر مواد آتش زا حشره کش‌ها خمیردندان‌ها و مواد پاک کننده دارد.

نقش بیولوژیکی

ترکیبات فسفری نقش حیاتی در تمام گونه های حیات شناخته شده در زمین دارد. فسفرهای معدنی نقش کلیدی در ملوکولهای بیولوژیکی مانند DNA و RNA که قسمتی از استقامتهای ملوکولی را شکل میدهند بازی میکنند. همچنین سلولهای زنده از فسفرهای معدنی برای ذکیره و انتقال انرژی سلولی از طریق تری فسفات آدنوزین ATP استفاده میکنند. نمکهای فسفات کلیسیوم هم توسط حیوانات برای سفت شدن استخوان استفاده میشود. ضمناً فسفر یک عضو حیاتی برای پروتوپلاسمهای سلولی و بافتهای عصبی میباشد.

تاریخچه

فسفر (که یونانی آن فسفروس به معنای"حامل روشنایی" و از نامهای باستانی سیاره زهره میباشد ) در سال 1669 توسط شیمیدان آلمانی Henning Brand در حین تولید یک دارو از ادرار کشف شد. براند با تبخیر ادرار سعی در تقطیر نمک داشت که در این فرایند ماده سفید رنگی تولید شد که در تاریکی میدرخشید و با نور زیادی میسوخت. از آن روز تابندگی فسفری برای شرح اشیاءی که در شب بدون سوختن میدرخشند بکار برده شد.

کبریتهای اولیه که از فسفر سفید در ترکیباتشان اسفاده میشد به دلیل سمی بودن خطرناک بودند و استفاده از آنها موجبات قتل و خودکشی و.... را فراهم میکرد. (یک داستان نا معلوم حکایت از این دارد که زنی با اضافه کردن فسفر سفید به غذای شوهرش قصد کشتن وی را داشت که هنگام جوشانیدن غذا به دلیل به وجود آمد بخار نورانی لو رفت.)

همچنین کارگران کبریت ساز به دلیل مجاورت با بخار آن دچار مردگی استخوانهای فک میشدند. زمانی که فسفر قرمز که خاصیت آتش زایی و سمی به مراتب کمتری را دارد کشف شد جایگزین فسفر سفید در صنعت کبریت سازی گردید.

پیدایش

فسفر به دلیل واکنش پذیری در هوا و دیگر مواد حاوی اکسیژن به تنهایی در طبیعت یافت نمیشود ولی به صورت ترکیبی به مقدار زیادی در معادن گوناگون پخش شده اند. که بزرگترین این معادن در روسیه مراکش فلوریدا Idaho, Tennesse و Utah قرار دارد.

فسفرهای چندشکلی سفید میتوانند به شیوه های گوناگونی تهیه شوند. در یک فرایند تری کلسیم فسفات که از سخره های فسفاتی گرفته شده در مجاورت کربن و سیلیکا در کوره های سوختی یا برقی حرارت داده میشود. در این فرایند عناصر فسفری به صورت بخار آزاد شده و به صورت اسید فسفریک جمع آوری میشوند.

هشدارها

فسفر یک ماده بسیار سمی میباشد و حتی مقدار 50 mg آن کشنده و مرگ آور است.

فسفر سفید باید همیشه در زیر آب نگهداری شود چرا که در مجاورت هوا بسیار واکنش پذیر میباشد. هنگام کار با آن حتما باید از انبر استفاده شود چرا که تماس آن با پوست میتواند باعث سوختگی های مزمن شود. خاصیت سمی و مزمن فسفر سفید باعث میشود که کارگرانی که باید با آن کنند دچار بیماری Necrosis of the Jaw مردگی فک که اصطلاحا PhossyJaw نامیده میشود گرفتار آیند. استرهای فسفاتی برای سیستم عصبی سمی هست.

  حاصلخیزی خاک

رشد گیاه و عوامل مؤثر در آن:

منظور از رشد گیاه توسعه تدریجی اندامهای گیاه بوده که آنرا می توان به صورت مختلف از قبیل وزن خشک، طول، ارتفاع یا قطر اندازه گیری نمود. در این اندازه گیری ممکن است کل گیاه مورد نظر بوده یا تنها یک قسمت نظیر برگ، گل، میوه یا بذر آن مورد توجه باشد. در کشاورزی علمی مطالعه رشد گیاه و عوامل مؤثر بر آن از اهمیت خاصی برخوردار است زیرا هدف اصلی از انجام کلیه عملیات کشاورزی برداشت هر چه بیشتر محصول به ازاء حداقل منابع به کار رفته است. عوامل مؤثر بر رشد گیاه عبارتند از:

A) درجه حرارت: درجه حرارت مناسب برای اغلب گیاهان زراعی بین 15 تا 40 درجه سانتی گراد است. در درجه حرارتهای بالاتر یا پایین تر از این، مقدار رشد به شدت کاهش می یابد. حرارت بر فعالیت های گیاهی نظیر فتوسنتز (کربن گیری)، قابلیت نفوذ دیواره یافته، جذب آب و مواد غذایی، تعرق، فعالیت آنزیمی و انعقاد پروتئین تأثیر می گذارد.

B) رطوبت: آب در گیاهان برای ساختن کربوهیدراتها، نگهداری شادابی پروتوپلاسم و همچنین برای نقل و انتقال عناصر غذایی لازمست. کمبود آب باعث کاهش تقسیم یاخته ای و کوچک ماندن یاخته‌ها می شود. هم خشکی خاک و هم خیسی بیش از حد آن به رشد گیاه صدمه می زند.

انرژی تابشی:

کیفیت، شدت و طول مدت روشنایی بر رشد اثر می گذارد. منظور از کیفیت نور طول موج غالب آن است. آزمایشات نشان داده که گر چه طیف کامل نور سفید برای اغلب گیاهان مناسب است ولی رنگ های مختلف می تواند اثرات مختلفی بر رشد داشته باشند. ازمایشات در مورد شدت نور روز قادر به رشد کامل خود می باشند. البته احتیاجات گیاهان مختلف از این متفاوت بوده و برخی به شدتهای نور بیشتری احتیاج دارند. طول مدت روشنایی از عواملی ات که به نحو چشمگیری در رشد گیاه مؤثر است.

گیاهان را از این نظر به 3 دسته روز بلند، روز کوتاه و حد واسط تقسیم می کنند. گیاهان روز بلند گیاهانی هستند که فقط در صورتی به گل می نشینند که زمان روشنایی مساوی یا درازتر از مدت معینی باشد. اگر زمان روشنایی از این مدت کوتاهتر باشد، این گیاهان فقط به رشد سبزینه ای خود ادامه می دهند. شبدر و غلات جزء این گروه می باشند.

گیاهان روز کوتاه به آن دسته از گیاهان اطلاق می شود که فقط در صورتی گل می دهند که زمان روشنایی مساوی یا کوتاهتر از مدت معینی باشد. بعضی از ارقام توتون روز کوتاه هستند. از گیاهان حد واسط می توان به پنبه اشاره کرد. با کنترل این عوامل می توان گیاهان را خارج از فصل یا خارج از نقطه جغرافیایی اصلی وادار به گل دادن نمود.

ترکیب اتمسفر:

گاز کربنیک برای انجام عمل فتوسنتز گیاهان لازمست. غلظت این گاز در اتمسفر حدود 03/0 درصد است. آزمایشات نشان داده اند که به طور کلی غلظت های تا چند برابر این مقدار می تواند اثر مثبت بر رشد گیاه داشته باشند. با کنترل غلظت گاز کربنیک در گلخانه می توان محصول برخی گیاهان را به طور قابل ملاحظه ای افزایش داد.

ترکیب هواای خاک: غلظت گاز اکسیژن در هوای خاک می تواند بر رشد ریشه در نتیجه رشد قسمت های هوایی گیاه تأثیر بگذارد. از آنجا که تراکم خاک (ازدیاد وزن مخصوص ظاهری) می تواند در وضعیت تهویه خاک در نتیجه غلظت گاز اکسیژن مؤثر باشد به خوبی می توان دریافت که عامل ساختمان خاک می تواند نقش مهمی در رشد گیاه داشته باشد. رطوبت خاک نیز با اشغال فضاهای خالی می تواند در کاهش غلظت اکسیژن در خاک مؤثر باشد. هر چه رطوبت خاک بیشتر باشد هوای خاک کمتر و سرعت تعویض آن با هوای اتمسفر کندتر است.

البته برخی گیاهان نظیر برنج در شرایطی که خاک از رطوبت اشباع باشد نیز به رشد خود ادامه می دهند.

واکنش خاک:

PH خاک به طور قابل ملاحظه ای بر قابلیت استفاده عناصر غذایی خاک اثر می گذارد و از این طریق می توان بر رشد گیاه مؤثر واقع شود. راجع به اثر PH بررشد گیاه در فصل خواص شیمیای خاک صحبت شد. 

 

  موجودات زنده:

منظور از موجودات زنده در این بخش، وجود عوامل بیماری زایی است که در فصل خواص بیولوژیکی درباره آن صحبت شد. این گونه عوامل بیماری زا مسلماً می تواند محدودیت زیادی در رشد گیاه ایجاد کنند. از طرف دیگر وجود موجودات زنده ریزی که سبب تثبیت ازت و یا بیشتر قابل استفاده شدن فسفر می شود طبعاً به رشد گیاه کمک می کنند. حشرات وآفات مختلف نیز می توانند با حمله به گیاه مانعی در راه رسیدن به حداکثر رشد گیاه ایجاد کنند. وجود علف های هرز یا در مزرعه می تواند با رقابت بر مواد غذایی و آب محدودریت هایی را در رشد گیاه سبب شوند.

عناصر غذایی:

حیات گیاهان و رشد آنها مستلزم جذب برخی عناصر نظیر کربن، هیدروژن، اکسیژن، ازت فسفر و غیره می باشد.

عدم وجود مواد مانع رشد: به طور کلی می توان کلیه عناصر در صورتی که غلظت شان در محیط ریشه از حد معینی تجاوز نکند مانع رشد گیاه می شوند. البته بعضی عناصر نظیر آلومینیوم حتی در غلظت هایکم قادر به جلوگیری از رشد می باشند. از جمله عناصر سمی دیگر می توان به نیکل و جیوه اشاره کرد. برخی مواد شیمیایی مانند فنل نیز دارای خاصیت سمی می باشند. باید توجه داشت که کلیه عوامل ذکر شده در بالا در رشد گیاه مؤثر بوده و برای رسیدن به حاکثر محصول هر یک از این عوامل در حد مناسب خود باشند.

در مباحث مربوط به حاصلخیزی خاک فقط به عناصر غذایی و عوامل مؤثر در قابلیت استفاده آنان برای گیاه صحبت شده و فرض می شود که سایر عوامل مؤثر در رشد در حد کفایت می باشد. 

 

عناصر غذایی ضروری گیاه:

یک عنصر باید دارای خصوصیات زیر باشد تا به عنوان یک عنصر ضروری گیاه شناخته شود.

1) کمبود عنصر تکمیل مراحل سبزینه ای یا تولید مثل را غیرممکن سازد

2)علائم کمبود عنصر مورد نیاز فقط با دادن آن عنصر برطرف گردد

3) عنصر به طور مستقیم در تغذیه گیاه دخیل بوده و اثر آن مربوط به اصلاح شرایط میکروبیولوژیکی یا شیمیایی محیط رشد نباشد.

حداقل 16 عنصر برای رشد گیاه ضروری تشخیص داده شده اند.این شاندزه عنصر عبارتند از:

کربن – هیدروژن – اکسیژن – ازت – فسفر – پتاسیم – کلسیم – منیزیوم – گوگرد – آهن – روی – مس – منگنز – بر – مولیبدن و کلر

هم اکنون ضرورت 4 عنصر دیگر یعنی سدیم، کبالت و انادیوم و سیلیسیوم نیز برای برخی گیاهان به اثبات رسیده است. عناصری که در لیست عناصر ضروری قرار دارد همگی برای رشد گیاهان لازم بوده و اهمیت هیچ کدام از دیگری کمتر نبوده ولی مقدار لازم آنها برای رشد با یکدیگر تفاوت بسیار دارد. عناصری که در لیست عناصر ضروری قرار دارند همگی برای رشد گیاهان لازم بوده و اهمیت هیچ کدام از دیگری کمتر نبوده ولی مقدار لازم آنها برای رشد با یکدیگر تفاوت بسیار دارد. کربن – هیدروژن – اکسیژن – ازت – فسفر – پتاسیم – کلسیم – منیزیوم – گوگرد در مقادیر زیاد توسط گیاهان مصرف شده اند لذا آنها را عناصر غذایی پرمصرف می نامند و بقیه را عناصر کم مصرف می نامند. عنصر کربن به صورت گاز کربنیک از هوا جذب می شود. اکسیژن و هیدروژن نیز از آب خاک تأمین می گردند. بقیه عناصر ضروری توسط ریشه از خاک جذب می شود. مقدار کمی از کربن و اکسیژن ممکنست به صورت کربنات از خاک جذب شود. مقداری گوگرد نیز ممکنست به صورت گاز انیدرید سولفور و از طریق برگها جذب شود. 

  نقش عناصر غذایی در گیاه و علائم کمبود آن:

3 عنصر کربن، هیدروژن و اکسیژن در ساختمان کربوهیدراتها، پروتئین ها، چربیها و سایر ترکیبات آلی دخالت دارد. بنابراین 3 عنصر مذکور تشکیل دهنده اصلی بافتهای گیاهی می باشند.

ازت: این عنصر یکی از اجزاء سازنده هر یافته بوده و پروتئین هایی که به منزله آنزیم عمل می کنند و همچنین در ساختمان مولکول کلروفیل دخالت مستقیم دارد.

مقدار ازت در قسمت های جوان در حال رشد به مراتب بیشتر از مقدارآن در بافتهای گیاهی مسن تر می باشد. ازت مخصوصاً در برگها و دانه‌ها به مقدار فراوان یافت می شود. مقدار ازت در بافت های گیاهی حدود 1 تا 5 درصد وزن خشک آن می باشد.

شکل های قابل جذب آن برای گیاهان آنیون نیترات (-NO3) کاتیون آمونیوم (+NH4) و ترکیب اوره co(NH2)2 می باشد کمبود ازت سبب توقف رشد گیاه و زردی رنگ آن می شود. این رنگ زرد ابتدا از برگهای پائینی (برگهای مسن گیاه) شروع می شود و این در حالی است که برگهای بالایی (برگهای جوان) همچنان سبز می مانند. زیادی ازت نسبت به عناصر دیگر نظیر فسفر، پتاسیم و گوگرد می تواند سبب طولانی شدن دوره رشد وبه تأخیر افتادن بلوغ گیاه شود. 

عناصر شیمیایی موجود در خاک

مواد معدنی معمولاً قسمت اعظم مواد تشکیل دهنده خاک را شامل می شوند. این مواد از تجزیه و تخریب سنگ مادری بوجود آمده اند. مواد معدنی خود از عناصر اولیه معدنی مختلف تشکیل شده اند که برای آشنایی از نسبت تقریبی آنها در زیر به توزیع این عناصر در پوسته زمین اشاره می شود.


توزیع عناصر معدنی

نام عنصر   علامت اختصاری درصد

اکسیژن     O       2/49

سیلسیم     Si       7/25

آلومینیم       Al       5/7

آهن       Fe       7/4

کلسیم     Ca       39/3

سدیم      Na       63/3

پتاسیم     K       40/2

منیزیم     Mg      93/1

هیدروژن        H       87/0

تیتان     Ti       58/0

کلر           Cl       19/0

کربن      C       10/0

منگنز     Mn      10/0

فسفر      P        10/0

گوگرد     S        06/0

باریم     Ba       04/0

ازت       N       03/0

فلوئور     F        03/0

کرم            Cr       03/0

نیکل      Ni       02/0

استرانسیوم     Sr       02/0

مس        Cu       01/0

علاوه بر عناصر جدول فوق عناصر دیگری به مقدار کمتر در پوسته جامد زمین یافت می شود که با آنها به رقمی معادل صددرصد در جمع جدول خواهیم رسید. از این عناصر می توان بر، کبالت، ید مولیبدن، سرب، سلنیوم، وانادیوم را نام برد. البته گاهی بر حسب سنگ های مادری یا به علل شرایط اقلیمی و زمین شناسی خاص بعضی از همین عناصر کمیاب را استخراج نمود. 

  ترکیب شیمیایی عمده خاک:

کلیه عناصر مورد نیاز گیاهان در پوسته جامد زمین و بالطبع در خاک وجود دارند. در میان این عناصر کربن، اکسیژن و هیدروژن به قدر کافی از هوا و آب، در اختیار گیاه قرار می گیرند و بقیه از تجزیه و تخریب مواد معدنی و بقایای آلی تأمین می شوند. در این فصل آن دسته از عناصر اخیر مورد توجه قرار می گیرند که تأثیر آنها کم و بیش در خواص فیزیکی، شیمیایی، بیولوژیک و به خصوص حاصلخیزی خاک ثابت گردیده است. 

  ازت در خاک

یکی از عناصر مورد نیاز شدید گیاهان است. این عنصر به طور متوسط 3-1 درصد ماده خشک نبات را تشکیل می دهد و مقدار متوسط آن در ترکیبات معدنی پوسته جامد زمین می تواند به تنهایی پاسخگویی یک زراعت با بازده کافی باشد. گیاه در تمام دوره رشد به ازت نیاز دارد. در ابتدای رشد ازت معمولاً به صورت ترکیبات پروتیدی در تشکیل و ساختمان اندامهای ذخیره ای به عنوان عنصری مؤثر در ترکیب محصولات غذایی جلوه می کند. کلیه گیاهان آلی ازت مورد نیاز خود را به صورت معدنی (اسید نیتریک) تأمین می کنند. در سالهای اخیر ثابت گردید که گیاهان قادرند ازت آمونیاک را نیز قبل از تبدیل به ازت نیترونیتریک جذب بنمایند. ولی ازت آمونیاکی معمولاً به مقدار کم در خاک باقی می ماند و به ویژه در شرایط مطلوب (ساخت، رطوبت، اسیدتیه و تهویه مناسب) به کمک باکتریهای نیترو و نیتریک ساز به طور وسیع مراحل تبدیل به نیترات را طی می کند و بعداً مورد استفاده گیاهان قرار می گیرند.

قسمت اعظم ازت مورد نیاز گیاهان از تجزیه و تخریب مواد آلی خاک حاصل می شود. در محصول نهایی این تغییر و تحول ازت به صورت آمونیاک، نیتریت و نیترات دیده می شود. باقیمانده مرده گیاهان و اجساد موجودات زنده خاک منابع اصلی مواد آلی ازته را در خاک تشکیل می دهند. در جستجوی منابع ازت در خاک، نبا


دانلود با لینک مستقیم


تحقیق و بررسی در مورد نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار

دانلود مقاله درباره استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم

اختصاصی از فی ژوو دانلود مقاله درباره استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله درباره استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم


دانلود مقاله درباره استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :153

 

فهرست مطالب :

عنوان                                                                                                                                    صفحه

چکیده

فصل اول مقدمه

1-1- پیشگفتار..................................................................................................... 4

1-2- رئوس مطالب ............................................................................................ 7

1-3- تاریخچه ..................................................................................................... 9

فصل دوم : پایداری دینامیکی سیستم های قدرت

2-1- پایداری دینامیکی سیستم های قدرت......................................................... 16

2-2- نوسانات با فرکانس کم در سیستم های قدرت .......................................... 17

2-3- مدلسازی سیستمهای قدرت تک ماشینه .................................................... 18

2-4- طراحی پایدار کننده های سیستم قدرت (PSS) ....................................... 23

2-5- مدلسازی سیستم قدرت چند ماشینه........................................................... 27

فصل سوم: کنترل مقاوم

3-1-کنترل مقاوم ................................................................................................ 30

3-2- مسئله کنترل مقاوم...................................................................................... 31

3-2-1- مدل سیستم............................................................................................ 31

3-2-2- عدم قطعیت در مدلسازی...................................................................... 32

3-3- تاریخچه کنترل مقاوم.................................................................................. 37

3-3-1- سیر پیشرفت تئوری............................................................................... 37

3-3-2- معرفی شاخه های کنترل مقاوم.............................................................. 39

3-4- طراحی کنترل کننده های مقاوم برای خانواده ای از توابع انتقال ..................... 45

3-4-1- بیان مسئله.............................................................................................. 45

3-4-2- تعاریف و مقدمات................................................................................. 46

3-4-4-‌‌‌تبدیل مسئله پایدارپذیری مقاوم به‌یک مسئله Nevanlinna–Pick ....... 50

3-4-5- طراحی کنترل کننده............................................................................... 53

3-5- پایدار سازی مقاوم سیستم های بازه ای ..................................................... 55

3-5-1- مقدمه و تعاریف لازم................................................................................. 55

2-5-3- پایداری مقاوم سیستم های بازه ای........................................................ 59

3-5-3- طراحی پایدار کننده های مقاوم مرتبه بالا............................................... 64

فصل چهارم  : طراحی پایدار کننده های مقاوم برای سیستم های قدرت

4-1- طراحی پایدار کننده های مقاوم برای سیستم های قدرت .......................... 67

4-2- طراحی پایدار کننده های مقاوم به روش Nevanlinna – Pick ............. 69

برای سیستم های قدرت تک ماشینه ..................................................................... 69

4-2-1- مدل سیستم............................................................................................ 69

4-2-2- طرح یک مثال........................................................................................ 71

4-2-3 – طراحی پایدار کننده مقاوم به روش Nevanlinna – Pick............... 73

4-2-2- بررسی نتایج.......................................................................................... 77

4-2-5- نقدی بر مقاله........................................................................................ 78

4-3- بررسی پایداری دینامیکی یک سیستم قدرت چند ماشینه .......................... 83

4-3-1- مدل فضای حالت سیستم های قدرت چند ماشینه................................. 83

4-3-2- مشخصات یک سیستم چند ماشینه........................................................ 86

4-3-3-طراحی پایدار کننده های سیستم قدرت.................................................. 90

4-3-4- پاسخ سیستم به ورودی پله.................................................................... 93

4-4- طراحی پایدار کننده های مقاوم برای سیستم های قدرت چند ماشینه ........ 95

4-4-1- اثر تغییر پارامترهای بر پایداری دینامیکی............................................... 95

4-4-2- مدلسازی تغییر پارامترها به کمک سیستم های بازه ای.......................... 101

 4-4-3-پایدارسازی مجموعه‌ای ازتوابع انتقال به کمک تکنیک‌های‌بهینه سازی........ 105

4-4-4- استفاده از روش Kharitonov در پایدار سازی مقاوم........................... 106

4-4-5- استفاده از یک شرط کافی در پایدار سازی مقاوم................................... 110

4-5- طراحی پایدار کننده های مقاوم برای سیستم قدرت چندماشینه (2)........... 110

4-5-1- جمع بندی مطالب.................................................................................. 110

4-5-2-طراحی پایدار کننده های‌مقاوم بر اساس مجموعه‌ای از نقاط کار............ 111

4-5-3- مقایسه عملکرد PSS کلاسیک با کنترل کننده های جدید..................... 113

4-5-4- نتیجه گیری........................................................................................... 115

فصل پنجم : استفاده از ورش طراحی جدید در حل چند مسئله

5-1- استفاده از ورش طراحی جدید در حل چند مسئله ..................................... 121

5-2- طراحی PSS‌های مقاوم به منظور هماهنگ سازی PSS  ها ..................... 122

 5-2-1- تداخل PSS‌ها ..................................................................................... 122

5-2-2- بررسی مسئله تداخل PSS‌ها در یک سیستم قدرت سه ماشینه ............ 124

5-2-3- استفاده از روش طراحی بر اساس چند نقطه کار در هماهنگ .................... 126

انتخاب مجموعه مدلهای طراحی .......................................................................... 127

5-2-4-‌مقایسه‌عملکرد دو نوع پایدار کننده به کمک شبیه سازی کامپیوتری........ 130

5-3- طراحی کنترل کننده های بهینه (  فیدبک حالت ) قابل اطمینان برای سیستم قدرت    132

 5-3-1) طراحی کننده فیدبک حالت بهینه ......................................................... 132

تنظیم کننده  های خطی ........................................................................................ 133

 5-3-2-کاربرد کنترل بهینه در پایدار سازی سیستم های قدرت چند ماشینه....... 134

5-3-3-طراحی کنترل بهینه بر اساس مجموعه‌ای از مدلهای سیستم .................. 136

 5-3-4- پاسخ سیستم به ورودی پله .................................................................. 140

فصل ششم : بیان نتایج

6-1- بیان نتایج ................................................................................................... 144

6-2- پیشنهاد برای تحقیقات بیشتر...................................................................... 147

مراجع.................................................................................................................... 148

ضمیمه الف – معادلات دینامیکی ماشین سنکرون................................................. 154

ضمیمه ب – ضرایب K1 تا K6 ........................................................................... 156

ضمیمه پ – برنامه ریزی غیر خطی...................................................................... 158


چکیده :

توسعه شبکه های قدرت نوسانات خود به خودی با فرکانس کم را، در سیستم به همراه داشته است. بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث بوجود آمدن چنین نوساناتی در سیستم می شود. در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود. اما بسته به شرایط نقطه کار و مقادیر پارامترهای سیستم ممکن است این نوسانات برای مدت طولانی ادامه یافته و در بدترین حالت دامنه آنها نیز افزایش یابد. امروزه جهت بهبود میرایی نوسانات با فرکانس کم سیستم، در اغلب شبکه های قدرت پایدار کننده های سیستم قدرت (PSS) به کار گرفته می شود.

این پایدار کننده ها بر اساس مدل تک ماشین – شین بینهایتِ سیستم در یک نقطه کار مشخص طراحی می شوند. بنابراین ممکن است با تغییر پارامترها و یا تغیر نقطه کار شبکه، پایداری سیستم در نقطه کار جدید تهدید شود.

موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترهای بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پایدار کردن
مجموعه ای از مدلهای سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله درباره استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم

پاورپوینت-تعریف انرژیهای پایدار و تجدیدپذیر- در 25 اسلاید-powerpoin-ppt

اختصاصی از فی ژوو پاورپوینت-تعریف انرژیهای پایدار و تجدیدپذیر- در 25 اسلاید-powerpoin-ppt دانلود با لینک مستقیم و پر سرعت .

پاورپوینت-تعریف انرژیهای پایدار و تجدیدپذیر- در 25 اسلاید-powerpoin-ppt


پاورپوینت-تعریف انرژیهای پایدار و تجدیدپذیر- در 25 اسلاید-powerpoin-ppt

انرژی پایدار (به انگلیسیSustainable energy)، انرژی بی پایان، انرژی بی‌نهایت و انرژی جاوید نیز نامیده می‌شود. انرژی تجدید پذیر جزء همین انرژی است از فناوری‌های استفاده شده برای این منظور می‌توان از انرژی خورشیدی، انرژی باد، انرژی موج، انرژی زمین‌گرمایی، انرژی جزر و مدی، سوخت زیستی اتانول، هیدروژن و نیروی برق‌آبی نام برد.

جهان بی پایان تعداد زیادی از ستارگان و اجرام آسمانی را در خود جای داده است. این ستارگان و اجرام دارای انرژی هستند اگر بتوان این انرژی را از فضا به کره زمین منتقل کرد. تأثیر مهمی در مشکلات مربوط به انرژی بشر خواهد داشت، این انرژی می‌تواند جایگزین قسمت قابل توجهی از سوخت‌های فسیلی شود چرا که سوخت‌های فسیلی به محیط زیست آسیب‌های فراوانی زده است و از طرفی امروزه انرژی اهمیت زیادی دارد.

استفاده از انرژی خورشیدی در فضا می‌تواند آغازی بر استفاده از انرژی‌های بی پایان موجود در فضا باشد. ستارگانی در فضا وجود دارند که ‍‍دمای آنها به ۳۳ هزار درجه کلوین می‌رسد یعنی گرمای فراوان و از آنجایی که گرما صورتی از انرژی است. فعل و انفعالات زیادی در فضا هستند که انرژی آزاد می‌کند با توجه به بحران‌های انرژی حال حاضر جهان، بشر نمی‌تواند نسبت به این مقدار انرژی موجود در فضا بی تفاوت باشد. این قضیه می‌تواند موجب کاهش هزینه‌های تمام شده برای انرژی شود. از طرفی در شرایط حال حاضر انرژی ارزش بسیاری دارد و می‌تواند موجب تولید ثروت شود.

انرژی تجدیدپذیر (به انگلیسی: Renewable energy)، که انرژی برگشت‌پذیر نیز نامیده می‌شود، به انواعی از انرژی می‌گویند که منبع تولید آن نوع انرژی، بر خلاف انرژی‌های تجدیدناپذیر (فسیلی)، قابلیت آن را دارد که توسط طبیعت در یک بازه زمانی کوتاه مجدداً به وجود آمده یا به عبارتی تجدید شود.

در سال‌های اخیر با توجه به این که منابع انرژی تجدید ناپذیر رو به اتمام هستند این منابع مورد توجه قرار گرفته‌اند. در سال ۲۰۰۶ حدود ۱۸٪ از انرژی مصرفی جهانی از راه انرژی‌های تجدید پذیر بدست آمد. سهم زیست‌توده به‌طور سنتی حدود ۱۳٪، که بیشتر جهت حرارت دهی و ۳٪ انرژی آبی بود.۲/۴٪ باقی‌مانده شامل نیروگاهای آبی کوچک، زیست توده مدرن، انرژی بادی، انرژی خورشیدی، انرژی زمین‌گرمایی و سوختهای زیستی می‌باشد که به سرعت در حال گسترش هستند.

استفاده از انرژی بادی با رشدی سالانه حدود ۳۰٪ با ظرفیت نصب شده ۱۵۷۹۰۰ مگاوات در سال ۲۰۰۹، به صورت وسیعی در اروپا، آسیا و ایالات متحده به چشم می‌خورد. درپایان سال ۲۰۰۹ میلادی مجموع انرژی تولیدی به وسیله فتوولتاییک به بیش از ۲۱۰۰۰ مگاوات رسید. ایستگاهای انرژی گرما-خورشیدی در آمریکا و اسپانیا مشغول به کار می باشندکه بزرگترین آنها با ظرفیت ۳۵۴ مگاوات در بیابان موهاوی در حال کار است.[۱]

بزرگترین نیروگاه زمین گرمایی دنیا در کالیفرنیا با نام نیروگاه گیسرز با ظرفیت ۷۵۰ مگاوات در حال فعالیت می‌باشد. برزیل یکی از کشورهایی است که پروژه‌های بزرگی برای استفاده از انرژی‌های نو (انرژی‌های تجدیدپذیر) انجام می‌دهد. ۱۸٪ از کل مصرف سوخت اتوموبیل‌های برزیل از طریق سوخت اتانولیکه از ساقهٔ نیشکر به‌دست می‌آید تأمین می‌شودسوخت اتانولی به‌صورت گسترده در ایالات متحده مورد استفاده قرار می‌گیرد.

بیشترین پروژه‌ها و محصولات انرژی‌های نو در مقیاس بزرگ موجود می‌باشند، ولی انرژی‌های نو را می‌توان در مقیاس‌های کوچک (نیروگاه کوچک خارج مدار یانیروگاه کوچک مدار بسته) هم استفاده کرد. به این دلیل که منابع انرژی‌های تجدیدپذیر در تمام نقاط کرهٔ زمین در دسترس می‌باشند، در حواشی و در جاهای دور افتاده، نقش انرژی‌های نو به‌خوبی نمایان می‌شود، در حالی که منابع سوخت‌های فسیلی (نفت، گاز، و زغال‌سنگ) فقط در کشورهای خاصی یافت می‌شودکنیا دارای بالاترین نرخ سالانه فروش سیستم‌های کوچک خورشیدی (۲۰-۱۰۰ وات) به میزان ۳۰۰۰۰ سیستم در سال می‌باشد.

نگرانی دربارهٔ تغییرات زیست محیطی در کنار افزایش قیمت روزافزان نفت و اوج تولید نفت و حمایت دولت‌ها، باعث رشد روزافزون وضع قوانینی می‌شود که بهره‌برداری و تجاری سازی این منابع سرشار تجدیدپذیر را تشویق می‌کنند.

انواع انرژی‌های تجدید پذیر عبارتند از:

 

  • در ایران

قانون عضویت دولت ایران در آژانس بین‌المللی انرژی‌های تجدیدپذیر پس از تصویب مجلس و تأیید شورای نگهبان در ۱۴ خرداد ۱۳۹۱ از سوی رییس جمهور ابلاغ شد. بر اساس این قانون، دولت اجازه خواهد داشت در آژانس بین‌المللی انرژی‌های تجدیدپذیر عضویت یابد و نسبت به پرداخت حق عضویت مربوط اقدام کند.

آژانس بین‌المللی انرژی‌های تجدیدپذیر (ایرِنا - IRENA) در سال ۲۰۰۹ برای ترویج استفاده و افزایش استفاده پایدار از همه اشکال انرژی تجدیدپذیر تاسیس شد. آسان کردن دسترسی به تمام اطلاعات مربوط به انرژی‌های تجدیدپذیر، از جمله اطلاعات فنی از دیگر وظایف ایرنا می‌باشد. اساسنامه این آژانس در تاریخ ۸ ژوئیه ۲۰۱۰ به تصویب رسید. در ژوئن ۲۰۰۹، در جلسه کمیسیون مقدماتی، ابوظبی به عنوان مقر آژانس به طور موقت انتخاب شد

تاریخچه

ایرنا را می‌توان زاییده افکار هرمان شیر، نماینده مبارز آلمانی و از رهبران طرفداران انرژی‌های تجدیدپذیر دانست. وی تا زمان مرگش (۱۴ اکتبر ۲۰۱۰ میلادی) رئیس یوروسولار (EUROSOLAR)، انجمن اروپایی انرژی‌های تجدیدپذیر، واقع در آلمان و رئیس مجلس جهانی انرژی‌های تجدیدپذیر بود. شیر، این ایده را در سال ۱۹۹۰ مطرح کرد و از آن زمان برای محقق کردن این ایده تلاش کرده.

در سال ۲۰۰۲، این ایده او را به سالن‌های مجلس آلمان کشاند. در آن زمان، حزب سوسیال دموکرات و حزب سبز، ایرنا را به‌عنوان بخشی از اهداف سیاسی خود منظور کردند. این امر تا سال ۲۰۰۷ ادامه داشت، زمانی‌که دولت آلمان این ایده را پذیرفت و شروع به مذاکرات دوجانبه با کشورهای مختلف کرد تا بتواند آن را با موفقیت اجرا کند. [۲] اساسنامه تاسیس آژانس بین‌المللی انرژی‌های تجدیدپذیر در تاریخ ۱۲ آبان ۱۳۸۷ (۲۳ اکتبر ۲۰۰۸ میلادی) در شهر مادرید اسپانیا توسط ۵۱ کشور طی کنفرانس مقدماتی نهایی گردید. این اساسنامه در اولین نشست مقدماتی اعضا در شهر بنآلمان به امضای ۵۷ کشور از جمله ایران رسید.

در دومین نشست مقدماتی این آژانس که در شرم الشیخ مصر برگزار شد، شهر مصدر در ابوظبی به عنوان مقر اصلی آژانس تعیین شد. مرکز فناوری و نوآوری در کشور آلمان و دفتر رابط آژانس با دیگر سازمان‌های فعال در زمینه انرژی‌های تجدیدپذیر نیز در اتریش مستقر خواهندشد.

در نشست پنجم کمیسیون مقدماتی در آوریل ۲۰۱۱ کلیه قوانین و مقررات مورد بررسی و تصویب کشورهای عضو قرارگرفت و نهایتاً با برگزاری اولین نشست مجمع، کلیه فعالیت‌های کمیسیون به آژانس واگذار گردید و با موافقت اکثریت کشورهای عضو عدنان امین به عنوان مدیرکل آژانس معرفی گردید. 

اهداف

براساس این اساسنامه هدف اصلی تشکیل آژانس توسعه گسترده و پذیرش استفاده از انواع انرژی‌های تجدیدپذیر در سراسر جهان می‌باشد و در این زمینه موارد زیر از اهمیت خاصی برخوردار است:

  • اولویت دادن به منافع حاصل از انرژی‌های تجدیدپذیر نسبت به سایر انرژی‌ها و افزایش بهره وری انرژی در کشورهای عضو
  • افزایش سهم انرژی‌های تجدیدپذیر در حفظ محیط زیست و کاهش استفاده بیش از حد از منابع طبیعی، کاهش ویرانی جنگل‌ها به ویژه در مناطق گرمسیری، جلوگیری از نابودی تنوع زیستیو دستیابی به امنیت عرضه انرژی در عرصه جهانی

طبق این اساسنامه ایرنا زمینه اصلی فعالیت آژانس کلیه انرژی‌های حاصل از منابع تجدیدپذیر بویژه انرژی‌های زیستی، زمین گرمایی، برق آبی، جزر ومد دریاها و اقیانوس‌ها، خورشیدی و بادیمی‌باشد.

     کشورهایی که اساسنامه آژانس را امضا کرده‌اند.     اساسنامه آژانس در مجلس این کشورها به تصویب رسیده‌است.(تا تاریخ ۱۶ می ۲۰۱۱)

تا تاریخ ۱۶ مارس ۲۰۱۱ ، ۱۴۸ کشور و اتحادیه اروپا اساسنامه ایرنا را امضا کرده‌اند. از این میان ۶۶ کشور اساسنامه آژانس را در مجلس خود به تصویب رسانده‌اند. از زمان برگزاری اولین نشست مجمع آژانس در آوریل ۲۰۱۱ تنها کشورهای عضوی که اساسنامه را به تصویب مجلس کشور متبوع خود رسانده‌اند به عنوان عضو دائم و دارای حق رای شناخته می‌شوند و سایر کشورها تنها به عنوان ناظر و بدون حق رای امکان شرکت در جلسات مجمع را دارند. وزارت نیرو و سازمان انرژیای نو ایران (سانا) به همراه نمایندگان وزارت امور خارجه به نمایندگی از ایران در جلسات و تصمیم گیری‌ها حضور دارند.

 زیست توده (به انگلیسیBiomass) یا بیوماس یک منبع تجدید پذیر انرژی است که از مواد زیستی به دست می‌آید. به‌طورکلی کلیه زباله‌هایی که منشاء زیستی داشته باشند و از تکثیر سلولی پدید آمده باشند بیوماس نامیده می‌شوند.


منابع بیوماسی که برای تولید انرژی مناسب هستند، طیف وسیعی از مواد را شامل می شوند که بطور عمده به شش گروه تقسیم بندی میگردند: 1-جنگل ها و ضایعات جنگلی، 2- محصولات و ضایعات کشاورزی، باغداری و صنایع غذایی، 3- فضولات دامی، 4- فاضلاب‌های شهری، 5- فاضلاب‌ها، پسماندها و زائدات آلی صنعتی، و 6- ضایعات جامد زباله‌های شهری زیست توده شامل زباله‌های زیستی قابل سوزاندن هم می‌شود، اما شامل مواد زیستی مانند سوخت فسیلی که طی فرایندهای زمین شناسی تغییر شکل یافته‌اند، مانند ذغال سنگ یا نفت نمی‌شود. اگرچه 
سوخت‌های فسیلی ریشه در زیست توده در زمان بسیار قدیم دارند، به دلیل اینکه کربن موجود در آن‌ها از چرخه زیستی طبیعت خارج شده‌است و سوزاندن آن‌ها تعادل دی اکسید کربن موجود در جو را به هم می‌زند، عنوان زیست توده به آن‌ها اطلاق نمی‌گردد.


تعریف 
اتحادیه اروپا از زیست توده که در راهنمای 2001/77/EC به تاریخ ۲۷ سپتامبر ۲۰۰۱ میلادی عنوان شده، عبارت است از: "زیست توده عبارت است از اجزا قابل تجزیه زیستی از محصولات، پسماندها و زائدات کشاورزی(شامل موادگیاهی و دامی)، جنگلها و صنایع وابسته و همچنین زائدات صنعتی و شهری قابل تجزیه". بر اساس تعریف علمی ارائه شده برای زیست توده در این آیین نامه، زیست توده به سوختهائی اطلاق می‌گردد که از جرم توده فیتوپلانکتونها و جرم توده زئوپلانکتونها ساخ


دانلود با لینک مستقیم


پاورپوینت-تعریف انرژیهای پایدار و تجدیدپذیر- در 25 اسلاید-powerpoin-ppt